FOXL 2 and CYP 19 B are crucial transcription factors in vertebrates and invertebrates that play pivotal roles in sex differentiation and gonadal development.The potential roles of the foxl 2 and cyp 19 b genes in sex...FOXL 2 and CYP 19 B are crucial transcription factors in vertebrates and invertebrates that play pivotal roles in sex differentiation and gonadal development.The potential roles of the foxl 2 and cyp 19 b genes in sex determination and gonadal development in Cyprinus carpio var.koi were explored using a non-invasive RNA interference(RNAi)method,histopathological observation and qPCR.Results demonstrate that foxl 2 exhibited a sexually dimorphic expression pattern in gonads,with a notable expression in ovaries;cyp 19 b was expressed in all peripheral tissues,with a particularly prominent expression in brain and gonads.The knockdown of foxl 2 by RNAi resulted in delay in the development of the female gonads.Conversely,no notable alterations were discerned in the gonads of C.carpio var.koi following the knockdown of cyp 19 b.The upregulation of sox 9 a,amh,and cyp 19 b following foxl 2 knockdown indicates that foxl 2 may play a pivotal role in gonadal development.Nevertheless,further investigation is required to ascertain the potential role of cyp 19 b.This study elucidated the role of foxl 2 and enhanced the understanding of the mechanisms of sex determination and gonadal development in C.carpio var.koi.展开更多
Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dyn...Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (M<sup>pro</sup>) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 M<sup>pro</sup>: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.展开更多
Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cott...Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.展开更多
目的评价原型株SARS-CoV-2灭活疫苗免疫BALB/c小鼠后对Delta株病毒的体液及细胞免疫效果,为现有疫苗对变异株的保护效果评价以及研发更加安全有效的疫苗提供参考。方法将SARS-CoV-2灭活疫苗经腹腔免疫雌性BALB/c小鼠2次,间隔14 d,以免疫...目的评价原型株SARS-CoV-2灭活疫苗免疫BALB/c小鼠后对Delta株病毒的体液及细胞免疫效果,为现有疫苗对变异株的保护效果评价以及研发更加安全有效的疫苗提供参考。方法将SARS-CoV-2灭活疫苗经腹腔免疫雌性BALB/c小鼠2次,间隔14 d,以免疫PBS作为对照,每组10只。初次免疫后第7、14、21、28、35和42天采集血清,间接ELISA法检测血清中针对Delta株病毒S和N蛋白的结合抗体效价,微量中和试验检测针对Delta株病毒的中和抗体效价。初次免疫后第42天,取小鼠脾脏,进行Elispot检测,评价细胞免疫水平。结果初次免疫后第7天即可检测到S蛋白结合抗体,加强免疫后抗体效价进一步升高,至第21天抗体几何平均滴度(geometric mean titer,GMT)为89144;而初次免疫后N蛋白结合抗体水平较低,加强免疫后迅速升高,与S蛋白抗体水平相当。初次免疫后第7、14天小鼠中和抗体阳转数为4/10和8/10,加强免疫后全部小鼠抗体阳转,中和抗体GMT达391。初次免疫后第42天,疫苗组IFNγ和IL-2平均斑点数均显著高于对照组(t分别为8.094和13.08,P均<0.0001)。结论SARS-CoV-2灭活疫苗2次免疫能够有效刺激小鼠产生针对Delta株病毒的体液免疫和细胞免疫。展开更多
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif...Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.展开更多
基金Supported by the Qingdao Aquarium Technology Collaborative Innovation Center Cooperation Project(No.20210021)the Researching Key Technologies for Selecting Excellent Koi Carp Germplasm(No.20223702032291)the Qingdao Agricultural University Tangwang Koi Carp Joint R&D Center Collaborative Project(No.20220271)。
文摘FOXL 2 and CYP 19 B are crucial transcription factors in vertebrates and invertebrates that play pivotal roles in sex differentiation and gonadal development.The potential roles of the foxl 2 and cyp 19 b genes in sex determination and gonadal development in Cyprinus carpio var.koi were explored using a non-invasive RNA interference(RNAi)method,histopathological observation and qPCR.Results demonstrate that foxl 2 exhibited a sexually dimorphic expression pattern in gonads,with a notable expression in ovaries;cyp 19 b was expressed in all peripheral tissues,with a particularly prominent expression in brain and gonads.The knockdown of foxl 2 by RNAi resulted in delay in the development of the female gonads.Conversely,no notable alterations were discerned in the gonads of C.carpio var.koi following the knockdown of cyp 19 b.The upregulation of sox 9 a,amh,and cyp 19 b following foxl 2 knockdown indicates that foxl 2 may play a pivotal role in gonadal development.Nevertheless,further investigation is required to ascertain the potential role of cyp 19 b.This study elucidated the role of foxl 2 and enhanced the understanding of the mechanisms of sex determination and gonadal development in C.carpio var.koi.
文摘Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (M<sup>pro</sup>) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 M<sup>pro</sup>: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.
文摘Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.
文摘目的评价原型株SARS-CoV-2灭活疫苗免疫BALB/c小鼠后对Delta株病毒的体液及细胞免疫效果,为现有疫苗对变异株的保护效果评价以及研发更加安全有效的疫苗提供参考。方法将SARS-CoV-2灭活疫苗经腹腔免疫雌性BALB/c小鼠2次,间隔14 d,以免疫PBS作为对照,每组10只。初次免疫后第7、14、21、28、35和42天采集血清,间接ELISA法检测血清中针对Delta株病毒S和N蛋白的结合抗体效价,微量中和试验检测针对Delta株病毒的中和抗体效价。初次免疫后第42天,取小鼠脾脏,进行Elispot检测,评价细胞免疫水平。结果初次免疫后第7天即可检测到S蛋白结合抗体,加强免疫后抗体效价进一步升高,至第21天抗体几何平均滴度(geometric mean titer,GMT)为89144;而初次免疫后N蛋白结合抗体水平较低,加强免疫后迅速升高,与S蛋白抗体水平相当。初次免疫后第7、14天小鼠中和抗体阳转数为4/10和8/10,加强免疫后全部小鼠抗体阳转,中和抗体GMT达391。初次免疫后第42天,疫苗组IFNγ和IL-2平均斑点数均显著高于对照组(t分别为8.094和13.08,P均<0.0001)。结论SARS-CoV-2灭活疫苗2次免疫能够有效刺激小鼠产生针对Delta株病毒的体液免疫和细胞免疫。
基金supported by the Natural Science Foundation of Anhui Province(No.2308085QE146 and 2208085ME116)the National Natural Science Foundation of China(No.52173039)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210894)the Anhui Provincial Universities Outstanding Youth Research Project(No.2023AH020018).
文摘Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.