期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A New Hybrid SARFIMA-ANN Model for Tourism Forecasting
1
作者 Tanzila Saba Mirza Naveed Shahzad +2 位作者 Sonia Iqbal Amjad Rehman Ibrahim Abunadi 《Computers, Materials & Continua》 SCIE EI 2022年第6期4785-4801,共17页
Many countries developed and increased greenery in their country sights to attract international tourists.This planning is now significantly contributing to their economy.The next task is to facilitate the tourists by... Many countries developed and increased greenery in their country sights to attract international tourists.This planning is now significantly contributing to their economy.The next task is to facilitate the tourists by sufficient arrangements and providing a green and clean environment;it is only possible if an upcoming number of tourists’arrivals are accurately predicted.But accurate prediction is not easy as empirical evidence shows that the tourists’arrival data often contains linear,nonlinear,and seasonal patterns.The traditional model,like the seasonal autoregressive fractional integrated moving average(SARFIMA),handles seasonal trends with seasonality.In contrast,the artificial neural network(ANN)model deals better with nonlinear time series.To get a better forecasting result,this study combines the merits of the SARFIMA and the ANN models and the purpose of the hybrid SARFIMA-ANN model.Then,we have used the proposed model to predict the tourists’arrival inNew Zealand,Australia,and London.Empirical results showed that the proposed hybrid model outperforms in predicting tourists’arrival compared to the traditional SARFIMA and ANN models.Moreover,these results can be generalized to predict tourists’arrival in any country or region with a complicated data pattern. 展开更多
关键词 sarfima hybrid model tourists’arrival forecasting ANN
在线阅读 下载PDF
Forecasting High-Frequency Long Memory Series with Long Periods Using the SARFIMA Model
2
作者 Handong Li Xunyu Ye 《Open Journal of Statistics》 2015年第1期66-74,共9页
This paper evaluates the efficiency of the SARFIMA model at forecasting high-frequency long memory series with especially long periods. Three other models, the ARFIMA, ARMA and PAR models, are also included to compare... This paper evaluates the efficiency of the SARFIMA model at forecasting high-frequency long memory series with especially long periods. Three other models, the ARFIMA, ARMA and PAR models, are also included to compare their forecasting performances with that of the SARFIMA model. For the artificial SARFIMA series, if the correct parameters are used for estimating and forecasting, the model performs as well as the other three models. However, if the parameters obtained by the WHI estimation are used, the performance of the SARFIMA model falls far behind that of the other models. For the empirical intraday volume series, the SARFIMA model produces the worst performance of all of the models, and the ARFIMA model performs best. The ARMA and PAR models perform very well both for the artificial series and for the intraday volume series. This result indicates that short memory models are competent in forecasting periodic long memory series. 展开更多
关键词 HIGH-FREQUENCY FINANCIAL SERIES LONG Memory LONG PERIODS sarfima MONTE Carlo Simulation Intraday Volume
暂未订购
SARFIMA模型在肾综合征出血热发病预测中的应用 被引量:1
3
作者 齐畅 刘利利 +4 位作者 李春雨 朱雨辰 张丹丹 王志强 李秀君 《中国卫生统计》 CSCD 北大核心 2021年第1期14-17,共4页
目的研究季节性自回归分数差分移动平均(SARFIMA)模型预测肾综合征出血热(HFRS)发病率的效果,并与SARIMA模型进行比较。方法收集山东省2009年1月至2018年12月HFRS月发病数据,考虑时间序列的短记忆性和长记忆性,构建SARFIMA模型,以SARIM... 目的研究季节性自回归分数差分移动平均(SARFIMA)模型预测肾综合征出血热(HFRS)发病率的效果,并与SARIMA模型进行比较。方法收集山东省2009年1月至2018年12月HFRS月发病数据,考虑时间序列的短记忆性和长记忆性,构建SARFIMA模型,以SARIMA模型作为对比,比较两个模型的预测准确性。结果山东省2009-2018年HFRS月发病率具有明显周期性和季节性特征。模型评估表明,SARFIMA模型具有更好的拟合度和预测能力。SARFIMA(1,0.33,3)(1,0,0)_(12):AIC=-629.76;RMSE=0.028;SARIMA(1,0,3)(1,1,0)_(12):AIC=-356.43;RMSE=0.033。结论 SARFIMA模型能较好地拟合山东省HFRS月发病率的动态变化,且预测效果优于SARIMA模型。因此,SARFIMA模型可用于HFRS发病率的预测。 展开更多
关键词 时间序列分析 季节性自回归分数差分移动平均 季节性自回归移动平均 肾综合征出血热 预测
暂未订购
Modeling Seasonal Fractionally Integrated Autoregressive Moving Average-Generalized Autoregressive Conditional Heteroscedasticity Model with Seasonal Level Shift Intervention
4
作者 Lawrence Dhliwayo Florance Matarise Charles Chimedza 《Open Journal of Statistics》 2020年第5期810-831,共22页
This paper introduces the class of seasonal fractionally integrated autoregressive<span style="font-family:Verdana;"> moving average</span><span style="font-family:Verdana;">-<... This paper introduces the class of seasonal fractionally integrated autoregressive<span style="font-family:Verdana;"> moving average</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">generalized conditional heteroskedastisticty (SARFIMA-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">GARCH) models, with level shift type intervention that are capable of capturing simultaneously four key features of time series: seasonality, long range dependence, volatility and level shift. The main focus is on modeling seasonal level shift (SLS) in fractionally integrated and volatile processes. A natural extension of the seasonal level shift detection test of the mean for a realization of time series satisfying SLS-SARFIMA and SLS-GARCH models w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> derived. Test statistics that are useful to examine if seasonal level shift in a</span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;"> SARFIMA-GARCH model </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> statistically plausible were established. Estimation of SLS-SARFIMA and SLS-GARCH parameters w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> also considered.</span> 展开更多
关键词 SEASONALITY Fractional Integration LONG-MEMORY Level Shift SLS-sarfima SLS-GARCH VOLATILITY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部