Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived chall...Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.展开更多
The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite ar...The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite are collected after intervals of 3 to 4 hours. Large bauxite processing industries producing 1 million tons of pure aluminium can have three grinding mills. Thus, the total number of samples to be tested in one day reaches a figure of 18 to 24. The sample of bauxite ore coming from the grinding mill is tested for its particle size and composition. For testing the composition, the bauxite ore sample is first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths to be used for the next testing. The whole procedure takes about 2 - 3 hours. With a large number of samples reaching the laboratory, the chances of error in composition analysis increase. In this study, we have used a composite sampling methodology to reduce the number of samples reaching the laboratory without compromising their validity. The results of the average composition of fifteen samples were measured against composite samples. The mean of difference was calculated. The standard deviation and paired t-test values were evaluated against predetermined critical values obtained using a two-tailed test. It was found from the results that paired test-t values were much lower than the critical values thus validating the composition attained through composite sampling. The composite sampling approach not only reduced the number of samples but also the chemicals used in the laboratory. The objective of improved analytical protocol to reduce the number of samples reaching the laboratory was successfully achieved without compromising the quality of analytical results.展开更多
One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific object...One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.展开更多
Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining s...Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining samples do not correspond one-to-one correctly.Mismatched datasets caused by missing samples make the industrial data unavailable for further machine learning.In order to align the mismatched samples,this article presents a cooperative iteration matching method(CIMM)based on the modified dynamic time warping(DTW).The proposed method regards the sequentially accumulated industrial data as the time series.Mismatched samples are aligned by the DTW.In addition,dynamic constraints are applied to the warping distance of the DTW process to make the alignment more efficient.Then a series of models are trained with the cumulated samples iteratively.Several groups of numerical experiments on different missing patterns and missing locations are designed and analyzed to prove the effectiveness and the applicability of the proposed method.展开更多
As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,qu...As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection.展开更多
Marine gas hydrates are highly sensitive to temperature and pressure fluctuations,and deviations from in-situ conditions may cause irreversible changes in phase state,microstructure,and mechanical properties.However,c...Marine gas hydrates are highly sensitive to temperature and pressure fluctuations,and deviations from in-situ conditions may cause irreversible changes in phase state,microstructure,and mechanical properties.However,conventional samplers often fail to maintain sealing and thermal stability,resulting in low sampling success rates.To address these challenges,an in-situ temperature-and pressure-preserved sampler for marine applications has been developed.The experimental results indicate that the selfdeveloped magnetically controlled pressure-preserved controller reliably achieves autonomous triggering and self-sealing,provides an initial sealing force of 83 N,and is capable of maintaining pressures up to 40 MPa.Additionally,a custom-designed intelligent temperature control chip and high-precision sensors were integrated into the sampler.Through the design of an optimized heat transfer structure,a temperature-preserved system was developed,achieving no more than a 0.3℃ rise in temperature within 2 h.The performance evaluation and sampling operations of the sampler were conducted at the Haima Cold Seep in the South China Sea,resulting in the successful recovery of hydrate maintained under in-situ pressure of 13.8 MPa and a temperature of 6.5℃.This advancement enables the acquisition of high-fidelity hydrate samples,providing critical support for the safe exploitation and scientific analysis of marine gas hydrate resources.展开更多
Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,...Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,Weibull,or generalized exponential distribution.In this article,we proved the existence and uniqueness of the maximum likelihood estimator(MLE)of the parameters of W ED(α,λ)in simple random sampling(SRS)and provided explicit expressions for the Fisher information number in SRS.Moreover,we also proved the existence and uniqueness of the MLE of the parameters of W ED(α,λ)in ranked set sampling(RSS)and provided explicit expressions for the Fisher information number in RSS.Simulation studies show that these MLEs in RSS can be real competitors for those in SRS.展开更多
Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological ...Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies.展开更多
An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extra...An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,which are commonly faced by rolling bearings and lead to low diagnostic accuracy.Initially,dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty(1D-2DWDCGAN)are constructed to augment the original dataset.A self-adaptive loss threshold control training strategy is introduced,and establishing a self-adaptive balancing mechanism for stable model training.Subsequently,a diagnostic model based on multidimensional feature fusion is designed,wherein complex features from various dimensions are extracted,merging the original signal waveform features,structured features,and time-frequency features into a deep composite feature representation that encompasses multiple dimensions and scales;thus,efficient and accurate small sample fault diagnosis is facilitated.Finally,an experiment between the bearing fault dataset of CaseWestern ReserveUniversity and the fault simulation experimental platformdataset of this research group shows that this method effectively supplements the dataset and remarkably improves the diagnostic accuracy.The diagnostic accuracy after data augmentation reached 99.94%and 99.87%in two different experimental environments,respectively.In addition,robustness analysis is conducted on the diagnostic accuracy of the proposed method under different noise backgrounds,verifying its good generalization performance.展开更多
Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neur...Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies.展开更多
Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random samp...Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampling design for some target variables.The Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic sampling.Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.展开更多
Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band lim...Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.展开更多
[Objective] To further improve the prediction and forecast and continuous control ability of broccoli clubroot disease. [Methods] The spatial distribution pattern of diseased or infected plants was analyzed using the ...[Objective] To further improve the prediction and forecast and continuous control ability of broccoli clubroot disease. [Methods] The spatial distribution pattern of diseased or infected plants was analyzed using the least square method, fre- quency distribution, aggregation index, m*-m regression analysis and Taylor's pow- er law model. [Result] The field distribution of broccoli plants with clubroot disease tended to be aggregated distribution, m'-m regression analysis showed that the el- ementary composition of the spatial distribution of diseased or infected plants was individual colony, the individuals attracted each other; the disease had obvious dis- ease focus in the field, and the individual colony showed uniform distribution pattern in the field. Taylor's power law showed that the spatial pattern of individual dis- eased or infected plant with clubroot disease tended to be uniform distribution with the increase of the density. On the basis of this, Iwao optimal theoretical sampling model and sequential sampling model were established, namely N =273.954 1/m- 59.698 5, To (N)=0.368 4N±1.926 8√N, respectively, it meant that when surveying N plants, if the accumulative incidence rate exceeded upper bound, the field can be set as control object; if the accumulative incidence rate didn't reach lower bound, it can be set as uncontrol field; if the accumulative incidence rate was between upper bound and lower bound, it should be surveyed continuously until the maximum sample size (mo=0.368 4) appeared, that was, the disease incidence was 15%, so the sampling number should be 684 plants. [Conclusion] The research results had very important instructive meaning for disease control.展开更多
When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes...When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets.展开更多
The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among ...The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.展开更多
Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,th...Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,the high hardware costs and data burden associated with the acquisition of neutron ToF signals pose significant challenges.Higher sampling rates increase the data volume,data processing,and storage hardware costs.Compressed sampling can address these challenges,but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals.This paper proposes a revolutionary deep learning-based compressed sampling(DL-CS)algorithm for reconstructing neutron ToF signals that outperform traditional compressed sampling methods.This approach comprises four modules:random projection,rising dimensions,initial reconstruction,and final reconstruction.Initially,the technique adaptively compresses neutron ToF signals sequentially using three convolutional layers,replacing random measurement matrices in traditional compressed sampling theory.Subsequently,the signals are reconstructed using a modified inception module,long short-term memory,and self-attention.The performance of this deep compressed sampling method was quantified using the percentage root-mean-square difference,correlation coefficient,and reconstruction time.Experimental results showed that our proposed DL-CS approach can significantly enhance signal quality compared with other compressed sampling methods.This is evidenced by a percentage root-mean-square difference,correlation coefficient,and reconstruction time results of 5%,0.9988,and 0.0108 s,respectively,obtained for sampling rates below 10%for the neutron ToF signal generated using an electron-beam-driven photoneutron source.The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other compressed sampling methods,exhibiting excellent reconstruction accuracy and speed.展开更多
A comprehensive fishery-independent survey generally incorporates various specialized surveys and integrates different survey objectives to maximize benefits while accounting for cost limitations.It is important to ev...A comprehensive fishery-independent survey generally incorporates various specialized surveys and integrates different survey objectives to maximize benefits while accounting for cost limitations.It is important to evaluate the adaptability of the comprehensive survey for different taxon to get the optimal design.However,the validity and adaptability of ichthyoplankton sampling incorporated in a comprehensive fishery-independent survey program in estimating abundance of ichthyoplankton species is little known.This study included ichthyoplankton sampling in an integrated survey and assessed the appropriateness of survey design.The Kriging interpolation based on Gaussian models was used to estimate the values at unsurveyed locations based on the original ichthyoplankton survey data in the Haizhou Bay as the“true”values.The sampling performances of the ongoing stratified random sampling(StRS),simple random sampling(SRS),cluster sampling(CS),hexagonal systematic sampling(SYS h),and regular systematic sampling(SYS r)with different sample sizes in estimating ichthyoplankton abundance were compared in relative estimation error(REE),relative bias(RB),and coefficient of variation(CV)by computer simulation.The ongoing StRS performed better than CS and SRS,but not as good as the two systematic sampling methods,and the current sample size in StRS design was insufficient to estimate ichthyoplankton abundance.The average REE values(meanREE)were significantly smaller in two systematic sampling designs than those in other three sampling designs,and the two systematic sampling designs could maintain good inter-annual stability of sampling performances.It is suggested that incorporating ichthyoplankton survey directly into stratified random fishery-independent surveys could not achieve the desired level of accuracy for survey objectives,but the accuracy can be improved by setting additional stations.The assessment framework presented in this study serves as a reference for evaluating the adaptability of integrated surveys to different objectives in other waters.展开更多
Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of t...Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of tissue samples not only aids in diagnosing and classifying hematological cancers,but also enables the detection of solid tumors.Its ability to detect numerous marker parameters from small samples is particularly useful when dealing with limited cell quantities,such as in fine-needle biopsy samples.This attribute not only addresses the challenge posed by small sample sizes,but also boosts the sensitivity of tumor cell detection.The significance of FCM in clinical and pathological applications continues to grow.To standardize the use of FCM in detecting hematological malignant cells in tissue samples and to improve quality control during the detection process,experts from the Cell Analysis Professional Committee of the Chinese Society of Biotechnology jointly drafted and agreed upon this consensus.This consensus was formulated based on current literature and clinical practices of all experts across clinical,laboratory,and pathological fields in China.It outlines a comprehensive workflow of FCM-based assay for the detection of hematological malignancies in tissue samples,including report content,interpretation,quality control,and key considerations.Additionally,it provides recommendations on antibody panel designs and analytical approaches to enhancing FCM tests,particularly in cases with limited sample sizes.展开更多
In this paper,an image processing algorithm which is able to synthesize material textures of arbitrary shapes is proposed.The presented approach uses an arbitrary image to construct a structure layer of the material.T...In this paper,an image processing algorithm which is able to synthesize material textures of arbitrary shapes is proposed.The presented approach uses an arbitrary image to construct a structure layer of the material.The resulting structure layer is then used to constrain the material texture synthesis.The field of second-moment matrices is used to represent the structure layer.Many tests with various constraint images are conducted to ensure that the proposed approach accurately reproduces the visual aspects of the input material sample.The results demonstrate that the proposed algorithm is able to accurately synthesize arbitrary-shaped material textures while respecting the local characteristics of the exemplar.This paves the way toward the synthesis of 3D material textures of arbitrary shapes from 2D material samples,which has a wide application range in virtual material design and materials characterization.展开更多
Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,...Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,amidoximebased radiation grafted adsorbents have been identified as effective for iron removal.In this study,an amidoximefunctionalized,radiation-grafted adsorbent synthesized from polypropylene waste(PPw-g-AO-10)was employed to remove iron from leached geological samples.The adsorption process was systematically optimized by investigating the effects of pH,contact time,adsorbent dosage,and initial ferric ion concentration.Under optimal conditions-pH1.4,a contact time of 90 min,and an initial ferric ion concentration of 4500 mg/L-the adsorbent exhibited a maximum iron adsorption capacity of 269.02 mg/g.After optimizing the critical adsorption parameters,the adsorbent was applied to the leached geological samples,achieving a 91%removal of the iron content.The adsorbent was regenerated through two consecutive cycles using 0.2 N HNO_(3),achieving a regeneration efficiency of 65%.These findings confirm the efficacy of the synthesized PPw-g-AO-10 as a cost-effective and eco-friendly adsorbent for successfully removing iron from leached geological matrices while maintaining a reasonable degree of reusability.展开更多
文摘Critical Height Sampling(CHS)estimates stand volume free from any model and tree form assumptions.Despite its introduction more than four decades ago,CHS has not been widely applied in the field due to perceived challenges in measurement.The objectives of this study were to compare estimated stand volume between CHS and sampling methods that used volume or taper models,the equivalence of the sampling methods,and their relative efficiency.We established 65 field plots in planted forests of two coniferous tree species.We estimated stand volume for a range of Basal Area Factors(BAFs).Results showed that CHS produced the most similar mean stand volume across BAFs and tree species with maximum differences between BAFs of 5-18m^(3)·ha^(−1).Horizontal Point Sampling(HPS)using volume models produced very large variability in mean stand volume across BAFs with the differences up to 126m^(3)·ha^(−1).However,CHS was less precise and less efficient than HPS.Furthermore,none of the sampling methods were statistically interchangeable with CHS at an allowable tolerance of≤55m^(3)·ha^(−1).About 72%of critical height measurements were below crown base indicating that critical height was more accessible to measurement than expected.Our study suggests that the consistency in the mean estimates of CHS is a major advantage when planning a forest inventory.When checking against CHS,results hint that HPS estimates might contain potential model bias.These strengths of CHS could outweigh its lower precision.Our study also implies serious implications in financial terms when choosing a sampling method.Lastly,CHS could potentially benefit forest management as an alternate option of estimating stand volume when volume or taper models are lacking or are not reliable.
文摘The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite are collected after intervals of 3 to 4 hours. Large bauxite processing industries producing 1 million tons of pure aluminium can have three grinding mills. Thus, the total number of samples to be tested in one day reaches a figure of 18 to 24. The sample of bauxite ore coming from the grinding mill is tested for its particle size and composition. For testing the composition, the bauxite ore sample is first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths to be used for the next testing. The whole procedure takes about 2 - 3 hours. With a large number of samples reaching the laboratory, the chances of error in composition analysis increase. In this study, we have used a composite sampling methodology to reduce the number of samples reaching the laboratory without compromising their validity. The results of the average composition of fifteen samples were measured against composite samples. The mean of difference was calculated. The standard deviation and paired t-test values were evaluated against predetermined critical values obtained using a two-tailed test. It was found from the results that paired test-t values were much lower than the critical values thus validating the composition attained through composite sampling. The composite sampling approach not only reduced the number of samples but also the chemicals used in the laboratory. The objective of improved analytical protocol to reduce the number of samples reaching the laboratory was successfully achieved without compromising the quality of analytical results.
基金Supported by the National Natural Science Foundation of China(42474239,41204128)China National Space Administration(Pre-research project on Civil Aerospace Technologies No.D010301)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA17010303)。
文摘One of the detection objectives of the Chinese Asteroid Exploration mission is to investigate the space environment near the Main-belt Comet(MBC,Active Asteroid)311P/PANSTARRS.This paper outlines the scientific objectives,measurement targets,and measurement requirements for the proposed Gas and Ion Analyzer(GIA).The GIA is designed for in-situ mass spectrometry of neutral gases and low-energy ions,such as hydrogen,carbon,and oxygen,in the vicinity of 311P.Ion sampling techniques are essential for the GIA's Time-of-Flight(TOF)mass analysis capabilities.In this paper,we present an enhanced ion sampling technique through the development of an ion attraction model and an ion source model.The ion attraction model demonstrates that adjusting attraction grid voltage can enhance the detection efficiency of low-energy ions and mitigate the repulsive force of ions during sampling,which is influenced by the satellite's surface positive charging.The ion source model simulates the processes of gas ionization and ion multiplication.Simulation results indicate that the GIA can achieve a lower pressure limit below 10-13Pa and possess a dynamic range exceeding 10~9.These performances ensure the generation of ions with stable and consistent current,which is crucial for high-resolution and broad dynamic range mass spectrometer analysis.Preliminary testing experiments have verified GIA's capability to detect gas compositions such as H2O and N2.In-situ measurements near 311P using GIA are expected to significantly contribute to our understanding of asteroid activity mechanisms,the evolution of the atmospheric and ionized environments of main-belt comets,the interactions with solar wind,and the origin of Earth's water.
基金the Key National Natural Science Foundation of China(No.U1864211)the National Natural Science Foundation of China(No.11772191)the Natural Science Foundation of Shanghai(No.21ZR1431500)。
文摘Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining samples do not correspond one-to-one correctly.Mismatched datasets caused by missing samples make the industrial data unavailable for further machine learning.In order to align the mismatched samples,this article presents a cooperative iteration matching method(CIMM)based on the modified dynamic time warping(DTW).The proposed method regards the sequentially accumulated industrial data as the time series.Mismatched samples are aligned by the DTW.In addition,dynamic constraints are applied to the warping distance of the DTW process to make the alignment more efficient.Then a series of models are trained with the cumulated samples iteratively.Several groups of numerical experiments on different missing patterns and missing locations are designed and analyzed to prove the effectiveness and the applicability of the proposed method.
基金supported by he National Natural Science Foundation of China(Grant Nos.12304359,12304398,12404382,12234009,12274215,and 12427808)the China Postdoctoral Science Foundation(Grant No.2023M731611)+4 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB717)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301400)Key R&D Program of Jiangsu Province(Grant No.BE2023002)Natural Science Foundation of Jiangsu Province(Grant Nos.BK20220759 and BK20233001)Program for Innovative Talents and Entrepreneurs in Jiangsu,and Key R&D Program of Guangdong Province(Grant No.2020B0303010001).
文摘As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection.
基金financially supported by Shenzhen Science and Technology Program(Nos.JSGG20220831105002005 and KJZD20231025152759002)Support from the National Natural Science Foundation of China(Nos.52374357 and 523B2101)funded by the Shared Voyages Project for Deep-sea and Abyss Scientific Research and Equipment Sea Trials of Hainan Deep-Sea Technology Innovation Center(No.DSTIC-GXHC-2022002)。
文摘Marine gas hydrates are highly sensitive to temperature and pressure fluctuations,and deviations from in-situ conditions may cause irreversible changes in phase state,microstructure,and mechanical properties.However,conventional samplers often fail to maintain sealing and thermal stability,resulting in low sampling success rates.To address these challenges,an in-situ temperature-and pressure-preserved sampler for marine applications has been developed.The experimental results indicate that the selfdeveloped magnetically controlled pressure-preserved controller reliably achieves autonomous triggering and self-sealing,provides an initial sealing force of 83 N,and is capable of maintaining pressures up to 40 MPa.Additionally,a custom-designed intelligent temperature control chip and high-precision sensors were integrated into the sampler.Through the design of an optimized heat transfer structure,a temperature-preserved system was developed,achieving no more than a 0.3℃ rise in temperature within 2 h.The performance evaluation and sampling operations of the sampler were conducted at the Haima Cold Seep in the South China Sea,resulting in the successful recovery of hydrate maintained under in-situ pressure of 13.8 MPa and a temperature of 6.5℃.This advancement enables the acquisition of high-fidelity hydrate samples,providing critical support for the safe exploitation and scientific analysis of marine gas hydrate resources.
基金Supported by the National Science Foundation of China(11901236,12261036)Scientific Research Fund of Hunan Provincial Education Department(21A0328)+2 种基金Provincial Natural Science Foundation of Hunan(2022JJ30469)Young Core Teacher Foundation of Hunan Province([2020]43)Provincial Postgraduate Innovation Foundation of Hunan(CX20221113)。
文摘Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,Weibull,or generalized exponential distribution.In this article,we proved the existence and uniqueness of the maximum likelihood estimator(MLE)of the parameters of W ED(α,λ)in simple random sampling(SRS)and provided explicit expressions for the Fisher information number in SRS.Moreover,we also proved the existence and uniqueness of the MLE of the parameters of W ED(α,λ)in ranked set sampling(RSS)and provided explicit expressions for the Fisher information number in RSS.Simulation studies show that these MLEs in RSS can be real competitors for those in SRS.
基金supported by Natural Science Research Project of Anhui Educational Committee(2023AH030041)National Natural Science Foundation of China(42277136)Anhui Province Young and Middle-aged Teacher Training Action Project(DTR2023018).
文摘Selection of negative samples significantly influences landslide susceptibility assessment,especially when establishing the relationship between landslides and environmental factors in regions with complex geological conditions.Traditional sampling strategies commonly used in landslide susceptibility models can lead to a misrepresentation of the distribution of negative samples,causing a deviation from actual geological conditions.This,in turn,negatively affects the discriminative ability and generalization performance of the models.To address this issue,we propose a novel approach for selecting negative samples to enhance the quality of machine learning models.We choose the Liangshan Yi Autonomous Prefecture,located in southwestern Sichuan,China,as the case study.This area,characterized by complex terrain,frequent tectonic activities,and steep slope erosion,experiences recurrent landslides,making it an ideal setting for validating our proposed method.We calculate the contribution values of environmental factors using the relief algorithm to construct the feature space,apply the Target Space Exteriorization Sampling(TSES)method to select negative samples,calculate landslide probability values by Random Forest(RF)modeling,and then create regional landslide susceptibility maps.We evaluate the performance of the RF model optimized by the Environmental Factor Selection-based TSES(EFSTSES)method using standard performance metrics.The results indicated that the model achieved an accuracy(ACC)of 0.962,precision(PRE)of 0.961,and an area under the curve(AUC)of 0.962.These findings demonstrate that the EFSTSES-based model effectively mitigates the negative sample imbalance issue,enhances the differentiation between landslide and non-landslide samples,and reduces misclassification,particularly in geologically complex areas.These improvements offer valuable insights for disaster prevention,land use planning,and risk mitigation strategies.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272259 and 52005148).
文摘An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,which are commonly faced by rolling bearings and lead to low diagnostic accuracy.Initially,dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty(1D-2DWDCGAN)are constructed to augment the original dataset.A self-adaptive loss threshold control training strategy is introduced,and establishing a self-adaptive balancing mechanism for stable model training.Subsequently,a diagnostic model based on multidimensional feature fusion is designed,wherein complex features from various dimensions are extracted,merging the original signal waveform features,structured features,and time-frequency features into a deep composite feature representation that encompasses multiple dimensions and scales;thus,efficient and accurate small sample fault diagnosis is facilitated.Finally,an experiment between the bearing fault dataset of CaseWestern ReserveUniversity and the fault simulation experimental platformdataset of this research group shows that this method effectively supplements the dataset and remarkably improves the diagnostic accuracy.The diagnostic accuracy after data augmentation reached 99.94%and 99.87%in two different experimental environments,respectively.In addition,robustness analysis is conducted on the diagnostic accuracy of the proposed method under different noise backgrounds,verifying its good generalization performance.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)National Natural Science Foundation of China(Grant No.12261131495)+1 种基金Beijing Municipal Science and Technology Commission,Adminitrative Commission of Zhongguancun Science Park(Grant No.Z231100006623006)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21)。
文摘Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies.
基金the Ministry of Agriculture and Forestry key project“Puuta liikkeelle ja uusia tuotteita metsästä”(“Wood on the move and new products from forest”)Academy of Finland(project numbers 295100 , 306875).
文摘Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampling design for some target variables.The Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic sampling.Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.
基金Supported by the National Natural Science Foundation of China(12064028)Jiangxi Provincial Natural Science Foundation(20232BAB201045).
文摘Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.
基金Supported by Agricultural Key Projects of Science and Technology Program of Taizhou City in Zhejiang Province(121KY17)~~
文摘[Objective] To further improve the prediction and forecast and continuous control ability of broccoli clubroot disease. [Methods] The spatial distribution pattern of diseased or infected plants was analyzed using the least square method, fre- quency distribution, aggregation index, m*-m regression analysis and Taylor's pow- er law model. [Result] The field distribution of broccoli plants with clubroot disease tended to be aggregated distribution, m'-m regression analysis showed that the el- ementary composition of the spatial distribution of diseased or infected plants was individual colony, the individuals attracted each other; the disease had obvious dis- ease focus in the field, and the individual colony showed uniform distribution pattern in the field. Taylor's power law showed that the spatial pattern of individual dis- eased or infected plant with clubroot disease tended to be uniform distribution with the increase of the density. On the basis of this, Iwao optimal theoretical sampling model and sequential sampling model were established, namely N =273.954 1/m- 59.698 5, To (N)=0.368 4N±1.926 8√N, respectively, it meant that when surveying N plants, if the accumulative incidence rate exceeded upper bound, the field can be set as control object; if the accumulative incidence rate didn't reach lower bound, it can be set as uncontrol field; if the accumulative incidence rate was between upper bound and lower bound, it should be surveyed continuously until the maximum sample size (mo=0.368 4) appeared, that was, the disease incidence was 15%, so the sampling number should be 684 plants. [Conclusion] The research results had very important instructive meaning for disease control.
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2024JC-YBMS-026).
文摘When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets.
基金supported by the Fundamental Research Funds of the Chinese Academy of Forestry(CAFYBB2020QB004)the National Natural Science Foundation of China(41971038,32171559,U20A2085,and U21A2005).
文摘The sap flow method is widely used to estimate forest transpiration.However,at the individual tree level it has spatiotemporal variations due to the impacts of environmental conditions and spatial relationships among trees.Therefore,an in-depth understanding of the coupling effects of these factors is important for designing sap flow measurement methods and performing accurate assessments of stand scale transpiration.This study is based on observations of sap flux density(SF_(d))of nine sample trees with different Hegyi’s competition indices(HCIs),soil moisture,and meteorological conditions in a pure plantation of Larix gmelinii var.principis-rupprechtii during the 2021 growing season(May to September).A multifactorial model of sap flow was developed and possible errors in the stand scale sap flow estimates associated with sample sizes were determined using model-based predictions of sap flow.Temporal variations are controlled by vapour pressure deficit(VPD),solar radiation(R),and soil moisture,and these relationships can be described by polynomial or saturated exponential functions.Spatial(individual)differences were influenced by the HCI,as shown by the decaying power function.A simple SF_(d)model at the individual tree level was developed to describe the synergistic influences of VPD,R,soil moisture,and HCI.The coefficient of variations(CV)of the sap flow estimates gradually stabilized when the sample size was>10;at least six sample trees were needed if the CV was within 10%.This study improves understanding of the mechanisms of spatiotemporal variations in sap flow at the individual tree level and provides a new methodology for determining the optimal sample size for sap flow measurements.
基金supported by the National Defense Technology Foundation Program of China(No.JSJT2022209A001-3)Sichuan Science and Technology Program(No.2021JDRC0011)+1 种基金Nuclear Energy Development Research Program of China(Research on High Energy X-ray Imaging of Nuclear Fuel)Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(No.SUSE652A001).
文摘Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,the high hardware costs and data burden associated with the acquisition of neutron ToF signals pose significant challenges.Higher sampling rates increase the data volume,data processing,and storage hardware costs.Compressed sampling can address these challenges,but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals.This paper proposes a revolutionary deep learning-based compressed sampling(DL-CS)algorithm for reconstructing neutron ToF signals that outperform traditional compressed sampling methods.This approach comprises four modules:random projection,rising dimensions,initial reconstruction,and final reconstruction.Initially,the technique adaptively compresses neutron ToF signals sequentially using three convolutional layers,replacing random measurement matrices in traditional compressed sampling theory.Subsequently,the signals are reconstructed using a modified inception module,long short-term memory,and self-attention.The performance of this deep compressed sampling method was quantified using the percentage root-mean-square difference,correlation coefficient,and reconstruction time.Experimental results showed that our proposed DL-CS approach can significantly enhance signal quality compared with other compressed sampling methods.This is evidenced by a percentage root-mean-square difference,correlation coefficient,and reconstruction time results of 5%,0.9988,and 0.0108 s,respectively,obtained for sampling rates below 10%for the neutron ToF signal generated using an electron-beam-driven photoneutron source.The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other compressed sampling methods,exhibiting excellent reconstruction accuracy and speed.
基金Supported by the National Key R&D Program of China(No.2022YFD2401301)the Special Financial Fund of Spawning Ground Survey in the Bohai Sea and the Yellow Sea from the Ministry of Agriculture and Rural Affairs,China(No.125C0505)。
文摘A comprehensive fishery-independent survey generally incorporates various specialized surveys and integrates different survey objectives to maximize benefits while accounting for cost limitations.It is important to evaluate the adaptability of the comprehensive survey for different taxon to get the optimal design.However,the validity and adaptability of ichthyoplankton sampling incorporated in a comprehensive fishery-independent survey program in estimating abundance of ichthyoplankton species is little known.This study included ichthyoplankton sampling in an integrated survey and assessed the appropriateness of survey design.The Kriging interpolation based on Gaussian models was used to estimate the values at unsurveyed locations based on the original ichthyoplankton survey data in the Haizhou Bay as the“true”values.The sampling performances of the ongoing stratified random sampling(StRS),simple random sampling(SRS),cluster sampling(CS),hexagonal systematic sampling(SYS h),and regular systematic sampling(SYS r)with different sample sizes in estimating ichthyoplankton abundance were compared in relative estimation error(REE),relative bias(RB),and coefficient of variation(CV)by computer simulation.The ongoing StRS performed better than CS and SRS,but not as good as the two systematic sampling methods,and the current sample size in StRS design was insufficient to estimate ichthyoplankton abundance.The average REE values(meanREE)were significantly smaller in two systematic sampling designs than those in other three sampling designs,and the two systematic sampling designs could maintain good inter-annual stability of sampling performances.It is suggested that incorporating ichthyoplankton survey directly into stratified random fishery-independent surveys could not achieve the desired level of accuracy for survey objectives,but the accuracy can be improved by setting additional stations.The assessment framework presented in this study serves as a reference for evaluating the adaptability of integrated surveys to different objectives in other waters.
基金supported by grants from the National Natural Science Foundation of China(grant numbers:82370195,82270203,81770211)the Fundamental Research Funds for the Central Univer-sities(grant number:2022CDJYGRH-001)Chongqing Technology Innovation and Application Development Special Key Project(grant number:CSTB2024TIAD-KPX0031).
文摘Flow cytometry(FCM),characterized by its simplicity,rapid processing,multiparameter analysis,and high sen-sitivity,is widely used in the diagnosis,treatment,and prognosis of hematological malignancies.FCM testing of tissue samples not only aids in diagnosing and classifying hematological cancers,but also enables the detection of solid tumors.Its ability to detect numerous marker parameters from small samples is particularly useful when dealing with limited cell quantities,such as in fine-needle biopsy samples.This attribute not only addresses the challenge posed by small sample sizes,but also boosts the sensitivity of tumor cell detection.The significance of FCM in clinical and pathological applications continues to grow.To standardize the use of FCM in detecting hematological malignant cells in tissue samples and to improve quality control during the detection process,experts from the Cell Analysis Professional Committee of the Chinese Society of Biotechnology jointly drafted and agreed upon this consensus.This consensus was formulated based on current literature and clinical practices of all experts across clinical,laboratory,and pathological fields in China.It outlines a comprehensive workflow of FCM-based assay for the detection of hematological malignancies in tissue samples,including report content,interpretation,quality control,and key considerations.Additionally,it provides recommendations on antibody panel designs and analytical approaches to enhancing FCM tests,particularly in cases with limited sample sizes.
文摘In this paper,an image processing algorithm which is able to synthesize material textures of arbitrary shapes is proposed.The presented approach uses an arbitrary image to construct a structure layer of the material.The resulting structure layer is then used to constrain the material texture synthesis.The field of second-moment matrices is used to represent the structure layer.Many tests with various constraint images are conducted to ensure that the proposed approach accurately reproduces the visual aspects of the input material sample.The results demonstrate that the proposed algorithm is able to accurately synthesize arbitrary-shaped material textures while respecting the local characteristics of the exemplar.This paves the way toward the synthesis of 3D material textures of arbitrary shapes from 2D material samples,which has a wide application range in virtual material design and materials characterization.
文摘Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,amidoximebased radiation grafted adsorbents have been identified as effective for iron removal.In this study,an amidoximefunctionalized,radiation-grafted adsorbent synthesized from polypropylene waste(PPw-g-AO-10)was employed to remove iron from leached geological samples.The adsorption process was systematically optimized by investigating the effects of pH,contact time,adsorbent dosage,and initial ferric ion concentration.Under optimal conditions-pH1.4,a contact time of 90 min,and an initial ferric ion concentration of 4500 mg/L-the adsorbent exhibited a maximum iron adsorption capacity of 269.02 mg/g.After optimizing the critical adsorption parameters,the adsorbent was applied to the leached geological samples,achieving a 91%removal of the iron content.The adsorbent was regenerated through two consecutive cycles using 0.2 N HNO_(3),achieving a regeneration efficiency of 65%.These findings confirm the efficacy of the synthesized PPw-g-AO-10 as a cost-effective and eco-friendly adsorbent for successfully removing iron from leached geological matrices while maintaining a reasonable degree of reusability.