期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SAIGM-KELM的短期风电功率预测
被引量:
16
1
作者
王浩
王艳
纪志成
《电力系统保护与控制》
EI
CSCD
北大核心
2020年第18期78-87,共10页
针对时序下风电功率的随机性和波动性问题,提出一种基于自适应智能灰色系统(SAIGM)和遗传算法优化核极限学习机(GA-KELM)的混合风电功率预测模型。首先,以灰色关联性分析不同季度下风向量与数值气象预报(NWP)对风电功率的影响为基础,采...
针对时序下风电功率的随机性和波动性问题,提出一种基于自适应智能灰色系统(SAIGM)和遗传算法优化核极限学习机(GA-KELM)的混合风电功率预测模型。首先,以灰色关联性分析不同季度下风向量与数值气象预报(NWP)对风电功率的影响为基础,采用自适应智能灰色系统预测风速,并将预测的风速与相连时序下的风向和NWP有效整合作为预测样本。其次,利用遗传算法优化核极限学习机搭建风电功率预测模型,并将实际风向量与NWP有效整合作为预测模型的训练样本。最后,利用优化后的预测模型实现不同季节的风电功率预测。实验表明混合预测模型可实现对风电功率的短期预测,预测结果具有准确性和可靠性。
展开更多
关键词
风电功率
灰色关联性
自适应智能灰色系统
遗传算法
核极限学习机
在线阅读
下载PDF
职称材料
题名
基于SAIGM-KELM的短期风电功率预测
被引量:
16
1
作者
王浩
王艳
纪志成
机构
江南大学物联网技术应用教育部工程研究中心
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2020年第18期78-87,共10页
基金
国家自然科学基金资助(61973138)。
文摘
针对时序下风电功率的随机性和波动性问题,提出一种基于自适应智能灰色系统(SAIGM)和遗传算法优化核极限学习机(GA-KELM)的混合风电功率预测模型。首先,以灰色关联性分析不同季度下风向量与数值气象预报(NWP)对风电功率的影响为基础,采用自适应智能灰色系统预测风速,并将预测的风速与相连时序下的风向和NWP有效整合作为预测样本。其次,利用遗传算法优化核极限学习机搭建风电功率预测模型,并将实际风向量与NWP有效整合作为预测模型的训练样本。最后,利用优化后的预测模型实现不同季节的风电功率预测。实验表明混合预测模型可实现对风电功率的短期预测,预测结果具有准确性和可靠性。
关键词
风电功率
灰色关联性
自适应智能灰色系统
遗传算法
核极限学习机
Keywords
wind power
grey correlation analysis
saigm
genetic algorithm
KELM
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TM614 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SAIGM-KELM的短期风电功率预测
王浩
王艳
纪志成
《电力系统保护与控制》
EI
CSCD
北大核心
2020
16
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部