Based on the comprehensive analysis of data from petrology and mineralogy,well logging,seismic surveys,paleontology,and geochemistry,a detailed research was conducted on paleoenvironmental and paleoclimatic conditions...Based on the comprehensive analysis of data from petrology and mineralogy,well logging,seismic surveys,paleontology,and geochemistry,a detailed research was conducted on paleoenvironmental and paleoclimatic conditions,and modeling of the source rocks in the second member of the Eocene Wenchang Formation(Wen 2 Member)in the Northern Shunde Subsag at the southwestern margin of the Pearl River Mouth Basin.The Wen 2 Member hosts excellent,thick lacustrine source rocks with strong longitudinal heterogeneity and an average total organic carbon(TOC)content of over 4.9%.The Wen 2 Member can be divided into three units(I,II,III)from bottom to top.Unit I features excellent source rocks with Type I organic matters(average TOC of 5.9%)primarily sourced from lake organisms;Unit II hosts source rocks dominated by Type II2 organic matters(average TOC of 2.2%),which are originated from mixed sources dominated by terrestrial input.Unit III contains good to excellent source rocks dominated by Type II1 organic matters(average TOC of 4.9%),which are mainly contributed by lake organisms and partially by terrestrial input.Under the background of rapid subsidence and limited source supply during intense rifting period in the Eocene,excellent source rocks were developed in Wen 2 Member in the Northern Shunde Subsag under the coordinated control of warm and humid climate,volcanic activity,and deep-water reducing conditions.During the deposition of Unit I,the warm and humid climate and volcanic activity promoted the proliferation of lake algaes,primarily Granodiscus,resulting in high initial productivity,and deep-water reducing conditions enabled satisfactory preservation of organic matters.These factors jointly controlled the development and occurrence of excellent source rocks.During the deposition of Unit II,a transition from warm to cool and semi-arid paleoclimatic conditions led to a decrease in lake algaes and initial productivity.Additionally,enhanced terrestrial input and shallow-water,weakly oxidizing water conditions caused a significant dilution and decomposition of organic matters,degrading the quality of source rocks.During the deposition of Unit III,when the paleoclimatic conditions are cool and humid,Pediastrum and Botryococcus began to thrive,leading to an increase in productivity.Meanwhile,the reducing environment of semi-deep water facilitated the preservation of excellent source rocks,albeit slightly inferior to those in Unit I.The study results clarify the differential origins and development models of various source rocks in the Shunde Sag,offering valuable guidance for evaluating source rocks and selecting petroleum exploration targets in similar marginal sags.展开更多
Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ...Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.展开更多
For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter inte...For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter intelligent optimization technique for shale oil reservoirs and verifies it by field application.A self-governing database capable of automatic capture,storage,calls and analysis is established.With this database,22 geological and engineering variables are selected for correlation analysis.A separated fracturing effect prediction model is proposed,with the fracturing learning curve decomposed into two parts:(1)overall trend,which is predicted by the algorithm combining the convolutional neural network with the characteristics of local connection and parameter sharing and the gated recurrent unit that can solve the gradient disappearance;and(2)local fluctuation,which is predicted by integrating the adaptive boosting algorithm to dynamically adjust the random forest weight.A policy gradient-genetic-particle swarm algorithm is designed,which can adaptively adjust the inertia weights and learning factors in the iterative process,significantly improving the optimization ability of the optimization strategy.The fracturing effect prediction and optimization strategy are combined to realize the intelligent optimization of fracturing parameters.The field application verifies that the proposed technique significantly improves the fracturing effects of oil wells,and it has good practicability.展开更多
Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and developm...Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and development.Herein,we investigated the Fengcheng Formation(P_(1)f)in Mahu Sag.This study integrated geochemistry,Soxhlet extraction,scanning electron microscopy,gas adsorption,and nuclear magnetic resonance T_(1)-T_(2)spectroscopy to elucidate the microscopic oil occurrence mechanisms in shales.Results indicate the presence of felsic shale,dolomitic shale,lime shale,and mixed shale within the P_(1)f.Matrix pores and microfractures associated with inorganic minerals are the predominant pore types in P_(1)f.Adsorbed oil primarily resides on the surfaces of organic matter and clay minerals,while free oil predominantly occupies inorganic pores and microfractures with larger pore sizes.Variations exist in the quantity and distribution of shale oil accumulation across different scales,where free oil and adsorbed oil are governed by dominant pores with diameters exceeding 10 nm and ineffective pores with diameters below 10 nm,respectively.Shale oil occurrence characteristics are influenced by organic matter,pore structure,and mineral composition.Felsic shale exhibits a high abundance of dominant pores,possesses the highest oil content,predominantly harbors free oil within these dominant pores,and demonstrates good mobility.Fluid occurrence in dolomitic shale and lime shale is intricate,with low oil content and a free oil to adsorbed oil ratio of 1:1.Mixed shale exhibits elevated clay mineral content and a scarcity of dominant pores.Moreover,ineffective pores contain increased bound water,resulting in medium oil content and limited mobility predominantly due to adsorption.Presently,shale oil mainly occurs in the dominant pores with a diameter larger than 10 nm in a free state.During the exploration and development of alkaline lacustrine shale oil resources,emphasis should be placed on identifying sweet spots within the felsic shale characterized by dominant pores.展开更多
Addressing the critical challenges of viscosity loss and barite sag in synthetic-based drilling fluids(SBDFs)under high-temperature,high-pressure(HTHP)conditions,this study innovatively developed a hyperbranched amide...Addressing the critical challenges of viscosity loss and barite sag in synthetic-based drilling fluids(SBDFs)under high-temperature,high-pressure(HTHP)conditions,this study innovatively developed a hyperbranched amide polymer(SS-1)through a unique stepwise polycondensation strategy.By integrating dynamic ionic crosslinking for temperature-responsive rheology and rigid aromatic moieties ensuring thermal stability beyond 260℃,SS-1 achieves a molecular-level breakthrough.Performance evaluations demonstrate that adding merely 2.0 wt% SS-1 significantly enhances key properties of 210℃-aged SBDFs:plastic viscosity rises to 45 mPa⋅s,electrical stability(emulsion voltage)reaches 1426 V,and the sag factor declines to 0.509,outperforming conventional sulfonated polyacrylamide(S-PAM,0.531)by 4.3%.Mechanistic investigations reveal a trifunctional synergistic anti-sag mechanism involving electrostatic adsorption onto barite surfaces,hyperbranched steric hindrance,and colloid-stabilizing network formation.SS-1 exhibits exceptional HTHP stabilization efficacy,substantially surpassing S-PAM,thereby providing an innovative molecular design strategy and scalable solution for next-generation high-performance drilling fluid stabilizers.展开更多
The Shanan sag in the central-western Bohai Bay Basin hosts high-quality Paleogene source rocks within the Shahejie Formation’s third member(E_(2)s_(3)).Despite hydrocarbon indications in Cenozoic strata,no commercia...The Shanan sag in the central-western Bohai Bay Basin hosts high-quality Paleogene source rocks within the Shahejie Formation’s third member(E_(2)s_(3)).Despite hydrocarbon indications in Cenozoic strata,no commercial accumulations have been discovered.An integrated approach combining geochemical analysis,fluid inclusion thermometry,apatite fission-track(AFT)thermochronology,and basin modeling was employed to unravel the paleo-geothermal regime and hydrocarbon generation history of E_(2)s_(3) source rocks.AFT data from the Shahejie Formation’s second member(E_(2)s_(2))reveal a tectonothermal event at 25 Ma that accelerated E_(2)s_(3) maturation.Outside three sub-sag depocenters,current E_(2)s_(2) reservoir temperatures remain below the 25 Ma paleo-geothermal maxima despite subsequent Neogene burial.Hydrocarbon-bearing brine inclusions in E_(2)s_(2) reservoirs exhibit peak homogenization temperatures(Th)at 25 Ma,with minimal high-temperature signals,indicating that E_(2)s_(3) hydrocarbon generation peaked during the Paleogene thermal event,with limited late-stage accumulation.The regional effects of the Dongying Movement necessitate thick Neogene sedimentation to compensate for the 25 Ma paleo-geothermal anomaly.Our findings emphasize targeting Neogene depocenters in petroleum exploration to mitigate the inhibitory effects of high paleo-heat flow on late hydrocarbon generation,thereby enhancing current accumulation potential.展开更多
The study on sand body connectivity and distribution patterns is of great significance for well emplacement and injection-production pattern analysis in the A oilfield of the Weixi?nan Sag currently at a pre-developme...The study on sand body connectivity and distribution patterns is of great significance for well emplacement and injection-production pattern analysis in the A oilfield of the Weixi?nan Sag currently at a pre-development stage.Based on the current drilling data,seismic data,and fault development characteristics,this study investigates the connectivity,geometric morphology,planar distribution,and vertical evolution of composite sand bodies(multi-stage superimposed channel sand bodies)within the fault block using seismic forward and inversion modeling.The El3I oil layer group in the third member of the Liushagang Formation is developed in the fan delta-front sub-facies,which mainly consists of subaqueous distributary channels.The thickness of single-stage subaqueous distributary channel sand bodies ranges from 2 to 6 m,and the width of composite channel sand bodies varies from 50 to 100 m.Under the long-term transgression background,the subaqueous distributary channels in the El3I oil layer group are relatively narrow,forming superimposed and continuous composite channel sand bodies through lateral migration and vertical stacking.The long-term base-level cycles control the width of subaqueous distributary channels,while the mid-term base-level cycles control the thickness of these channels.The subaqueous distributary channels developed during the late stage of mid-term base-level fall are thicker than those formed during the early stage.Accordingly,quantitative relationships between channel thickness and width are established for the early and late stages of mid-term base-level fall,to finely depict the evolution patterns of channel sand body geometry and stacking styles across different stages.These findings provide important guidance for accurately predicting the planar distribution and channel width of composite subaqueous distributary channels at different stages of the mid-term baselevel cycles.展开更多
The Jurassic tight sandstone oil and gas exploration and development in the eastern Yangxia Sag is a new field.To elucidate the origin,accumulation process and potential of tight oil and gas,the authors have conducted...The Jurassic tight sandstone oil and gas exploration and development in the eastern Yangxia Sag is a new field.To elucidate the origin,accumulation process and potential of tight oil and gas,the authors have conducted comprehensive analyses employing methodologies encompassing source rocks,oil geochemistry,and fluid inclusions.The results show that the abundance of organic matter of Jurassic source rocks is high,and the type of organic matter is ofⅡ-Ⅲand in mature evolution stage.The main source rocks of oil and gas are Huangshanjie Formation and Jurassic coal-bearing source rocks.Ahe Formation developed two stages of hydrocarbon charging,and the period is later than the reservoir densification time.Yangxia Formation oil charged before the reservoir densified,and the late gas charged after the reservoir densified.Hydrocarbon generation intensity of Jurassic source rocks has reached the basic conditions for the formation of tight gas reservoirs.Controlled by the difference of source rocks distribution and accumulation process,tight sandstone oil and gas accumulation conditions are better in the depression direction than in the southeast margin area.This study is of practical importance for expanding the exploration field and selecting favorable areas in the eastern Yangxia sag.展开更多
The Beibu Gulf Basin is an important oil-and gas-bearing basin offshore the China Sea,but the geological reserves of oil and gas are not very high,and there are significant differences between different sags.Previous ...The Beibu Gulf Basin is an important oil-and gas-bearing basin offshore the China Sea,but the geological reserves of oil and gas are not very high,and there are significant differences between different sags.Previous studies have shown that the formation and accumulation of oil and gas are closely related to deep structures,especially the crustal thickness or the relative undulation characteristics between the Moho and basement,but there is a lack of specific evaluation and quantitative standards.In this paper,we first invert the depth of the Moho in the Beibu Gulf Basin using satellite gravity anomalies and calculate the crustal thickness value based on this.Then,we count and analyze the crustal thickness value as well as the stretching factor that characterizes the crustal extension and thinning degree,and find that the NWW-trending contour closure of the 28 km Moho depth or 26 km crustal thickness corresponds significantly to the Weixinan-Fushan sag belt,which has already been proven to have considerable oil and gas discoveries,with a typical feature of crustal thinning to 22 km and the stretching factor reaching 1.1.Finally,we propose a comprehensive evaluation scheme based on the entropy weight method to normalize and evaluate the statistical features of the crust,and take a comprehensive score of Si>0.5 as an evaluation indicator for an oil-gas-rich sag.Based on this research,we believe that the Haizhong sag has considerable exploratory potential,followed by the Maichen sag,while the Leidong and Haitoubei sags have relatively smaller exploratory potential.The research results will help strategic decision-making of the oil and gas exploration in the Beibu Gulf Basin and provide new perspectives for studying the relationship between deep structures and the differential distribution of oil-gas-rich sags.展开更多
Research based on oil accumulation models is essential for exploring the hydrocarbon accumulation theory further.Studies on tight oil accumulation models focused on fan delta depositional systems,and in particular,sys...Research based on oil accumulation models is essential for exploring the hydrocarbon accumulation theory further.Studies on tight oil accumulation models focused on fan delta depositional systems,and in particular,systems involving source-reservoir separated type are scarce.To explore the accumulation model of tight oil in conglomerate,this study focused on the Permian-Triassic tight conglomerate oil in Mahu sag,Junggar Basin,using well drilling,well logging,seismic profiling,oil testing,and laboratory data,and analyzed the formation conditions,formation types,and distribution patterns of conglomerate reservoirs.The results show that,the conglomerate reservoirs are predominantly lithologic reservoirs and partly fault-lithologic reservoirs;there is no water evident at the edge or bottom around the reservoirs.The tight conglomerate layer in the delta plain subfacies of each fan exhibits high clay content and intense diagenesis,and the argillaceous rocks in the pro-fan delta subfacies and shallow lacustrine facies form the sealing and floor conditions.The sandy conglomerate of fan delta front subfacies is the main reservoir body.Additionally,strikeslip faulting in the Indosinian-Himalayan period formed an efficient faulting system for trans-stratal migration with Hercynian-Indosinian inverse faulting.Oil migration is driven by the overpressure caused by hydrocarbon generation from alkali lacustrine source rocks.The distribution of reservoirs is primarily controlled by the large fan bodies,namely the Zhongguai,Baijiantan,Karamay,Huangyangquan,Xiazijie,Xiayan,and Dabasong fans.Each fan body forms a group of reservoirs or oilfields,resulting in a widely distributed pattern,according to which reservoir and sealing constitute one whole body—i.e.,patterns of“one sand and one reservoir,one fan and one field.”This results in a quasi-continuous accumulation model,which includes strong oil charging,efficient faulting transportation,trans-stratal migration,and lithologic trapped accumulation.The proposed model is an important supplement to the existing model of quasi-continuous oil and gas accumulation.Overall,this study enriches unconventional oil and gas accumulation theories.展开更多
Understanding the occurrence state of shale oil is crucial for the effective development of shale oil resources.Although the second member of the Kongdian Formation(Ek2)is a key interval for lacustrine shale oil produ...Understanding the occurrence state of shale oil is crucial for the effective development of shale oil resources.Although the second member of the Kongdian Formation(Ek2)is a key interval for lacustrine shale oil production in the Cangdong Sag,Bohai Bay Basin,the occurrence state and controlling factors of shale oil in this formation remain poorly understood.This study established a multi-step programmed pyrolysis,combined with a light hydrocarbon recovery scheme,to quantitatively characterize the shale oil in different occurrence states.An integrated approach utilizing Rock-Eval pyrolysis,pyrolysis-gas chromatography,and crude oil gas chromatography was employed.Factors influencing the shale oil occurrence state were analyzed from petrology and organic geochemistry perspectives.The study revealed significant variations of shale oil occurrence states within the Ek2,attributed to differences in sedimentary organic matter,mineral compositions,sedimentary structures,and thermal maturity.Felsic laminae are the primary reservoir space for oil in laminated shales,and the frequent interbedding of felsic and organic-rich laminae facilitates the retention of free oil.The contents of free and adsorbed oil are primarily influenced by organic matter content and shale storage capacity,both of which exhibit distinct occurrence patterns.Based on the shale reservoir quality classification using the pyrolysis values of S1-1+S1-2 and(S1-1+S1-2)×100/TOC,the Ek2 shale demonstrates significant exploitation potential,with the first-level reservoirs comprising 66%,second-level reservoirs 11%,and third-level reservoirs 23%.These findings provide new insights into the geological accumulation and production of shale oil.展开更多
Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and...Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and exploration of the second member of the Paleogene Kongdian Formation(Kong-2 Member)in the Cangdong Sag,Bohai Bay Basin,China.It is clarified that the circle structure and circle effects are the marked features of a continental fault petroliferous basin,and they govern the orderly distribution of conventional and unconventional hydrocarbons in the whole petroleum systems of the rifted basin.Tectonic circle zones control sedimentary circle zones,while sedimentary circle zones and diagenetic circle zones control the spatial distribution of favorable reservoirs,thereby determining the orderly distribution of hydrocarbon accumulations in various circles.A model for the integrated,systematic accumulation of conventional and unconventional hydrocarbons under a multi-circle structure of the whole petroleum system of continental rifted basin has been developed.It reveals that each sag of the rifted basin is an independent whole petroleum system and circle system,which encompasses multiple orderly circles of conventional and unconventional hydrocarbons controlled by the same source kitchen.From the outer circle to the middle circle and then to the inner circle,there is an orderly transition from structural and stratigraphic reservoirs,to lithological and structural-lithological reservoirs,and finally to tight oil/gas and shale oil/gas enrichment zones.The significant feature of the whole petroleum system is the orderly control of hydrocarbons by multi-circle stratigraphic coupling,with the integrated,orderly distribution of conventional and unconventional reserves being the inevitable result of the multi-layered interaction within the whole petroleum system.This concept of multi-circle stratigraphic coupling for the orderly,integrated accumulation of conventional and unconventional hydrocarbons has guided significant breakthroughs in the overall,three-dimensional exploration and shale oil exploration in the Cangdong Sag.展开更多
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ...Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.展开更多
The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a...The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited.展开更多
The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these i...The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.Th...Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.The study shows that the Central African Rift System mainly develops high-quality lacustrine source rocks in the Lower Cretaceous,and the West African Rift System mainly develops high-quality terrigenous organic matter-rich marine source rocks in the Upper Cretaceous,and the two types of source rocks provide a material basis for the enrichment of oil and gas in the CWARS.Multiple sets of reservoir rocks including fractured basement and three sets of regional cap rocks in the Lower Cretaceous,the Upper Cretaceous,and the Paleogene are developed in the CWARS.Since the Late Mesozoic,due to the geodynamic factors including the dextral strike-slip movement of the Central African Shear Zone,the basins in different directions of the CWARS differ in terms of rifting stages,intervals of regional cap rocks,trap types and accumulation models.The NE-SW trending basins have mainly preserved one stage of rifting in the Early Cretaceous,with regional cap rocks developed in the Lower Cretaceous strata,forming traps of reverse anticlines,flower-shaped structures and basement buried hill,and two types of hydrocarbon accumulation models of"source and reservoir in the same formation,and accumulation inside source rocks"and"up-source and down-reservoir,and accumulation below source rocks".The NW–SE basins are characterized by multiple rifting stages superimposition,with the development of regional cap rocks in the Upper Cretaceous and Paleogene,forming traps of draping anticlines,faulted anticlines,antithetic fault blocks and the accumulation model of"down-source and up-reservoir,and accumulation above source rocks".The combination of reservoir and cap rocks inside source rocks of basins with multiple superimposed rifting stages,as well as the lithologic reservoirs and the shale oil inside source rocks of strong inversion basins are important fields for future exploration in basins of the CWARS.展开更多
基金Supported by the Research Project of China National Offshore Oil Corporation(SCKY-2023-HN-3)。
文摘Based on the comprehensive analysis of data from petrology and mineralogy,well logging,seismic surveys,paleontology,and geochemistry,a detailed research was conducted on paleoenvironmental and paleoclimatic conditions,and modeling of the source rocks in the second member of the Eocene Wenchang Formation(Wen 2 Member)in the Northern Shunde Subsag at the southwestern margin of the Pearl River Mouth Basin.The Wen 2 Member hosts excellent,thick lacustrine source rocks with strong longitudinal heterogeneity and an average total organic carbon(TOC)content of over 4.9%.The Wen 2 Member can be divided into three units(I,II,III)from bottom to top.Unit I features excellent source rocks with Type I organic matters(average TOC of 5.9%)primarily sourced from lake organisms;Unit II hosts source rocks dominated by Type II2 organic matters(average TOC of 2.2%),which are originated from mixed sources dominated by terrestrial input.Unit III contains good to excellent source rocks dominated by Type II1 organic matters(average TOC of 4.9%),which are mainly contributed by lake organisms and partially by terrestrial input.Under the background of rapid subsidence and limited source supply during intense rifting period in the Eocene,excellent source rocks were developed in Wen 2 Member in the Northern Shunde Subsag under the coordinated control of warm and humid climate,volcanic activity,and deep-water reducing conditions.During the deposition of Unit I,the warm and humid climate and volcanic activity promoted the proliferation of lake algaes,primarily Granodiscus,resulting in high initial productivity,and deep-water reducing conditions enabled satisfactory preservation of organic matters.These factors jointly controlled the development and occurrence of excellent source rocks.During the deposition of Unit II,a transition from warm to cool and semi-arid paleoclimatic conditions led to a decrease in lake algaes and initial productivity.Additionally,enhanced terrestrial input and shallow-water,weakly oxidizing water conditions caused a significant dilution and decomposition of organic matters,degrading the quality of source rocks.During the deposition of Unit III,when the paleoclimatic conditions are cool and humid,Pediastrum and Botryococcus began to thrive,leading to an increase in productivity.Meanwhile,the reducing environment of semi-deep water facilitated the preservation of excellent source rocks,albeit slightly inferior to those in Unit I.The study results clarify the differential origins and development models of various source rocks in the Shunde Sag,offering valuable guidance for evaluating source rocks and selecting petroleum exploration targets in similar marginal sags.
基金Supported by Leading Talent Program of Autonomous Region(2022TSYCLJ0070)PetroChina Prospective and Basic Technological Project(2021DJ0108)Natural Science Foundation for Outstanding Young People in Shandong Province(ZR2022YQ30).
文摘Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.
基金Supported by the National Science and Technology Major Project(2017ZX05009-005-003)National Natural Science Grant Fund for Surface Project(52174045)+1 种基金Chinese Academy of Engineering Strategic Consulting Project(2018-XZ-09)China National Petroleum Corporation(CNPC)-China University of Petroleum(Beijing)Special Project for Strategic Cooperation in Science and Technology(ZLZX2020-01)。
文摘For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter intelligent optimization technique for shale oil reservoirs and verifies it by field application.A self-governing database capable of automatic capture,storage,calls and analysis is established.With this database,22 geological and engineering variables are selected for correlation analysis.A separated fracturing effect prediction model is proposed,with the fracturing learning curve decomposed into two parts:(1)overall trend,which is predicted by the algorithm combining the convolutional neural network with the characteristics of local connection and parameter sharing and the gated recurrent unit that can solve the gradient disappearance;and(2)local fluctuation,which is predicted by integrating the adaptive boosting algorithm to dynamically adjust the random forest weight.A policy gradient-genetic-particle swarm algorithm is designed,which can adaptively adjust the inertia weights and learning factors in the iterative process,significantly improving the optimization ability of the optimization strategy.The fracturing effect prediction and optimization strategy are combined to realize the intelligent optimization of fracturing parameters.The field application verifies that the proposed technique significantly improves the fracturing effects of oil wells,and it has good practicability.
基金financially supported by the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development(33550000-22-ZC0613-0006)National Natural Science Foundation of China(42202133)+2 种基金CNPC Innovation Fund(2022DQ02-0106)Strategic Cooperation Technology Projects of the CNPC and CUPB(ZLZX2020-01-05)Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences),Ministry of Education,China(TPR-2023-05)。
文摘Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and development.Herein,we investigated the Fengcheng Formation(P_(1)f)in Mahu Sag.This study integrated geochemistry,Soxhlet extraction,scanning electron microscopy,gas adsorption,and nuclear magnetic resonance T_(1)-T_(2)spectroscopy to elucidate the microscopic oil occurrence mechanisms in shales.Results indicate the presence of felsic shale,dolomitic shale,lime shale,and mixed shale within the P_(1)f.Matrix pores and microfractures associated with inorganic minerals are the predominant pore types in P_(1)f.Adsorbed oil primarily resides on the surfaces of organic matter and clay minerals,while free oil predominantly occupies inorganic pores and microfractures with larger pore sizes.Variations exist in the quantity and distribution of shale oil accumulation across different scales,where free oil and adsorbed oil are governed by dominant pores with diameters exceeding 10 nm and ineffective pores with diameters below 10 nm,respectively.Shale oil occurrence characteristics are influenced by organic matter,pore structure,and mineral composition.Felsic shale exhibits a high abundance of dominant pores,possesses the highest oil content,predominantly harbors free oil within these dominant pores,and demonstrates good mobility.Fluid occurrence in dolomitic shale and lime shale is intricate,with low oil content and a free oil to adsorbed oil ratio of 1:1.Mixed shale exhibits elevated clay mineral content and a scarcity of dominant pores.Moreover,ineffective pores contain increased bound water,resulting in medium oil content and limited mobility predominantly due to adsorption.Presently,shale oil mainly occurs in the dominant pores with a diameter larger than 10 nm in a free state.During the exploration and development of alkaline lacustrine shale oil resources,emphasis should be placed on identifying sweet spots within the felsic shale characterized by dominant pores.
基金the National Natural Science Foundation(41802169)Key Laboratory of Polar Geology and Marine Mineral Resources Foudation(HNPY-202506)for supporting this study.
文摘The Shanan sag in the central-western Bohai Bay Basin hosts high-quality Paleogene source rocks within the Shahejie Formation’s third member(E_(2)s_(3)).Despite hydrocarbon indications in Cenozoic strata,no commercial accumulations have been discovered.An integrated approach combining geochemical analysis,fluid inclusion thermometry,apatite fission-track(AFT)thermochronology,and basin modeling was employed to unravel the paleo-geothermal regime and hydrocarbon generation history of E_(2)s_(3) source rocks.AFT data from the Shahejie Formation’s second member(E_(2)s_(2))reveal a tectonothermal event at 25 Ma that accelerated E_(2)s_(3) maturation.Outside three sub-sag depocenters,current E_(2)s_(2) reservoir temperatures remain below the 25 Ma paleo-geothermal maxima despite subsequent Neogene burial.Hydrocarbon-bearing brine inclusions in E_(2)s_(2) reservoirs exhibit peak homogenization temperatures(Th)at 25 Ma,with minimal high-temperature signals,indicating that E_(2)s_(3) hydrocarbon generation peaked during the Paleogene thermal event,with limited late-stage accumulation.The regional effects of the Dongying Movement necessitate thick Neogene sedimentation to compensate for the 25 Ma paleo-geothermal anomaly.Our findings emphasize targeting Neogene depocenters in petroleum exploration to mitigate the inhibitory effects of high paleo-heat flow on late hydrocarbon generation,thereby enhancing current accumulation potential.
文摘The study on sand body connectivity and distribution patterns is of great significance for well emplacement and injection-production pattern analysis in the A oilfield of the Weixi?nan Sag currently at a pre-development stage.Based on the current drilling data,seismic data,and fault development characteristics,this study investigates the connectivity,geometric morphology,planar distribution,and vertical evolution of composite sand bodies(multi-stage superimposed channel sand bodies)within the fault block using seismic forward and inversion modeling.The El3I oil layer group in the third member of the Liushagang Formation is developed in the fan delta-front sub-facies,which mainly consists of subaqueous distributary channels.The thickness of single-stage subaqueous distributary channel sand bodies ranges from 2 to 6 m,and the width of composite channel sand bodies varies from 50 to 100 m.Under the long-term transgression background,the subaqueous distributary channels in the El3I oil layer group are relatively narrow,forming superimposed and continuous composite channel sand bodies through lateral migration and vertical stacking.The long-term base-level cycles control the width of subaqueous distributary channels,while the mid-term base-level cycles control the thickness of these channels.The subaqueous distributary channels developed during the late stage of mid-term base-level fall are thicker than those formed during the early stage.Accordingly,quantitative relationships between channel thickness and width are established for the early and late stages of mid-term base-level fall,to finely depict the evolution patterns of channel sand body geometry and stacking styles across different stages.These findings provide important guidance for accurately predicting the planar distribution and channel width of composite subaqueous distributary channels at different stages of the mid-term baselevel cycles.
基金supported by Joint Fund Project of National Natural Science Foundation(No.U22B6002)CNPC Scientific Research and Technology Development Project(No.2023ZZ14YJ02).
文摘The Jurassic tight sandstone oil and gas exploration and development in the eastern Yangxia Sag is a new field.To elucidate the origin,accumulation process and potential of tight oil and gas,the authors have conducted comprehensive analyses employing methodologies encompassing source rocks,oil geochemistry,and fluid inclusions.The results show that the abundance of organic matter of Jurassic source rocks is high,and the type of organic matter is ofⅡ-Ⅲand in mature evolution stage.The main source rocks of oil and gas are Huangshanjie Formation and Jurassic coal-bearing source rocks.Ahe Formation developed two stages of hydrocarbon charging,and the period is later than the reservoir densification time.Yangxia Formation oil charged before the reservoir densified,and the late gas charged after the reservoir densified.Hydrocarbon generation intensity of Jurassic source rocks has reached the basic conditions for the formation of tight gas reservoirs.Controlled by the difference of source rocks distribution and accumulation process,tight sandstone oil and gas accumulation conditions are better in the depression direction than in the southeast margin area.This study is of practical importance for expanding the exploration field and selecting favorable areas in the eastern Yangxia sag.
基金The Scientific and Technological Project of China National Offshore Oil Corporation(CNOOC)Research Institute Co.,Ltd.under contract No.CCL2021RCPS0167KQNthe Open Fund Project for the year 2022 of National Engineering Research Center of Offshore Oil and Gas Exploration under contract No.CCL2022RCPS0794RQN.
文摘The Beibu Gulf Basin is an important oil-and gas-bearing basin offshore the China Sea,but the geological reserves of oil and gas are not very high,and there are significant differences between different sags.Previous studies have shown that the formation and accumulation of oil and gas are closely related to deep structures,especially the crustal thickness or the relative undulation characteristics between the Moho and basement,but there is a lack of specific evaluation and quantitative standards.In this paper,we first invert the depth of the Moho in the Beibu Gulf Basin using satellite gravity anomalies and calculate the crustal thickness value based on this.Then,we count and analyze the crustal thickness value as well as the stretching factor that characterizes the crustal extension and thinning degree,and find that the NWW-trending contour closure of the 28 km Moho depth or 26 km crustal thickness corresponds significantly to the Weixinan-Fushan sag belt,which has already been proven to have considerable oil and gas discoveries,with a typical feature of crustal thinning to 22 km and the stretching factor reaching 1.1.Finally,we propose a comprehensive evaluation scheme based on the entropy weight method to normalize and evaluate the statistical features of the crust,and take a comprehensive score of Si>0.5 as an evaluation indicator for an oil-gas-rich sag.Based on this research,we believe that the Haizhong sag has considerable exploratory potential,followed by the Maichen sag,while the Leidong and Haitoubei sags have relatively smaller exploratory potential.The research results will help strategic decision-making of the oil and gas exploration in the Beibu Gulf Basin and provide new perspectives for studying the relationship between deep structures and the differential distribution of oil-gas-rich sags.
基金the National Science and Technology Major Project of China for their support。
文摘Research based on oil accumulation models is essential for exploring the hydrocarbon accumulation theory further.Studies on tight oil accumulation models focused on fan delta depositional systems,and in particular,systems involving source-reservoir separated type are scarce.To explore the accumulation model of tight oil in conglomerate,this study focused on the Permian-Triassic tight conglomerate oil in Mahu sag,Junggar Basin,using well drilling,well logging,seismic profiling,oil testing,and laboratory data,and analyzed the formation conditions,formation types,and distribution patterns of conglomerate reservoirs.The results show that,the conglomerate reservoirs are predominantly lithologic reservoirs and partly fault-lithologic reservoirs;there is no water evident at the edge or bottom around the reservoirs.The tight conglomerate layer in the delta plain subfacies of each fan exhibits high clay content and intense diagenesis,and the argillaceous rocks in the pro-fan delta subfacies and shallow lacustrine facies form the sealing and floor conditions.The sandy conglomerate of fan delta front subfacies is the main reservoir body.Additionally,strikeslip faulting in the Indosinian-Himalayan period formed an efficient faulting system for trans-stratal migration with Hercynian-Indosinian inverse faulting.Oil migration is driven by the overpressure caused by hydrocarbon generation from alkali lacustrine source rocks.The distribution of reservoirs is primarily controlled by the large fan bodies,namely the Zhongguai,Baijiantan,Karamay,Huangyangquan,Xiazijie,Xiayan,and Dabasong fans.Each fan body forms a group of reservoirs or oilfields,resulting in a widely distributed pattern,according to which reservoir and sealing constitute one whole body—i.e.,patterns of“one sand and one reservoir,one fan and one field.”This results in a quasi-continuous accumulation model,which includes strong oil charging,efficient faulting transportation,trans-stratal migration,and lithologic trapped accumulation.The proposed model is an important supplement to the existing model of quasi-continuous oil and gas accumulation.Overall,this study enriches unconventional oil and gas accumulation theories.
基金supported by the National Natural Science Foundation of China(No.41830431)the Shandong Provincial Key Research and Development Program(No.2020ZLYS08).
文摘Understanding the occurrence state of shale oil is crucial for the effective development of shale oil resources.Although the second member of the Kongdian Formation(Ek2)is a key interval for lacustrine shale oil production in the Cangdong Sag,Bohai Bay Basin,the occurrence state and controlling factors of shale oil in this formation remain poorly understood.This study established a multi-step programmed pyrolysis,combined with a light hydrocarbon recovery scheme,to quantitatively characterize the shale oil in different occurrence states.An integrated approach utilizing Rock-Eval pyrolysis,pyrolysis-gas chromatography,and crude oil gas chromatography was employed.Factors influencing the shale oil occurrence state were analyzed from petrology and organic geochemistry perspectives.The study revealed significant variations of shale oil occurrence states within the Ek2,attributed to differences in sedimentary organic matter,mineral compositions,sedimentary structures,and thermal maturity.Felsic laminae are the primary reservoir space for oil in laminated shales,and the frequent interbedding of felsic and organic-rich laminae facilitates the retention of free oil.The contents of free and adsorbed oil are primarily influenced by organic matter content and shale storage capacity,both of which exhibit distinct occurrence patterns.Based on the shale reservoir quality classification using the pyrolysis values of S1-1+S1-2 and(S1-1+S1-2)×100/TOC,the Ek2 shale demonstrates significant exploitation potential,with the first-level reservoirs comprising 66%,second-level reservoirs 11%,and third-level reservoirs 23%.These findings provide new insights into the geological accumulation and production of shale oil.
基金Supported by the National Science and Technology Major Project of China(2024ZD1400101)China National Key Research and Development Project(2022YFF0801204)Major Science and Technology Project of CNPC(2023ZZ15YJ01,2021DJ0702)。
文摘Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and exploration of the second member of the Paleogene Kongdian Formation(Kong-2 Member)in the Cangdong Sag,Bohai Bay Basin,China.It is clarified that the circle structure and circle effects are the marked features of a continental fault petroliferous basin,and they govern the orderly distribution of conventional and unconventional hydrocarbons in the whole petroleum systems of the rifted basin.Tectonic circle zones control sedimentary circle zones,while sedimentary circle zones and diagenetic circle zones control the spatial distribution of favorable reservoirs,thereby determining the orderly distribution of hydrocarbon accumulations in various circles.A model for the integrated,systematic accumulation of conventional and unconventional hydrocarbons under a multi-circle structure of the whole petroleum system of continental rifted basin has been developed.It reveals that each sag of the rifted basin is an independent whole petroleum system and circle system,which encompasses multiple orderly circles of conventional and unconventional hydrocarbons controlled by the same source kitchen.From the outer circle to the middle circle and then to the inner circle,there is an orderly transition from structural and stratigraphic reservoirs,to lithological and structural-lithological reservoirs,and finally to tight oil/gas and shale oil/gas enrichment zones.The significant feature of the whole petroleum system is the orderly control of hydrocarbons by multi-circle stratigraphic coupling,with the integrated,orderly distribution of conventional and unconventional reserves being the inevitable result of the multi-layered interaction within the whole petroleum system.This concept of multi-circle stratigraphic coupling for the orderly,integrated accumulation of conventional and unconventional hydrocarbons has guided significant breakthroughs in the overall,three-dimensional exploration and shale oil exploration in the Cangdong Sag.
基金Supported by the CNOOC Major Technology Project During the 14th FIVE-YEAR PLAN PERIOD(KJGG2022-0403)CNOOC Major Technology Project(KJZH-2021-0003-00).
文摘Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.
文摘The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited.
基金funded by the“Key Scientific Issues and Innovative Technology Research on Oil and Gas Resource Exploration in China Sea Risk Exploration Area”(Grant No.CCL2022RCPS2017XNN)from CNOOC Research Institute,Beijing.
文摘The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
基金Supported by the National Natural Science Foundation Project(92255302)National Science and Technology Major Project(2016ZX05029005)Scientific Research and Technological Development Project of PetroChina(2021DJ31).
文摘Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.The study shows that the Central African Rift System mainly develops high-quality lacustrine source rocks in the Lower Cretaceous,and the West African Rift System mainly develops high-quality terrigenous organic matter-rich marine source rocks in the Upper Cretaceous,and the two types of source rocks provide a material basis for the enrichment of oil and gas in the CWARS.Multiple sets of reservoir rocks including fractured basement and three sets of regional cap rocks in the Lower Cretaceous,the Upper Cretaceous,and the Paleogene are developed in the CWARS.Since the Late Mesozoic,due to the geodynamic factors including the dextral strike-slip movement of the Central African Shear Zone,the basins in different directions of the CWARS differ in terms of rifting stages,intervals of regional cap rocks,trap types and accumulation models.The NE-SW trending basins have mainly preserved one stage of rifting in the Early Cretaceous,with regional cap rocks developed in the Lower Cretaceous strata,forming traps of reverse anticlines,flower-shaped structures and basement buried hill,and two types of hydrocarbon accumulation models of"source and reservoir in the same formation,and accumulation inside source rocks"and"up-source and down-reservoir,and accumulation below source rocks".The NW–SE basins are characterized by multiple rifting stages superimposition,with the development of regional cap rocks in the Upper Cretaceous and Paleogene,forming traps of draping anticlines,faulted anticlines,antithetic fault blocks and the accumulation model of"down-source and up-reservoir,and accumulation above source rocks".The combination of reservoir and cap rocks inside source rocks of basins with multiple superimposed rifting stages,as well as the lithologic reservoirs and the shale oil inside source rocks of strong inversion basins are important fields for future exploration in basins of the CWARS.