Photovoltaic(PV)power generation is undergoing significant growth and serves as a key driver of the global energy transition.However,its intermittent nature,which fluctuates with weather conditions,has raised concerns...Photovoltaic(PV)power generation is undergoing significant growth and serves as a key driver of the global energy transition.However,its intermittent nature,which fluctuates with weather conditions,has raised concerns about grid stability.Accurate PV power prediction has been demonstrated as crucial for power system operation and scheduling,enabling power slope control,fluctuation mitigation,grid stability enhancement,and reliable data support for secure grid operation.However,existing prediction models primarily target centralized PV plants,largely neglecting the spatiotemporal coupling dynamics and output uncertainties inherent to distributed PV systems.This study proposes a novel Spatio-Temporal Graph Neural Network(STGNN)architecture for distributed PV power generation prediction,designed to enhance distributed photovoltaic(PV)power generation forecasting accuracy and support regional grid scheduling.This approach models each PV power plant as a node in an undirected graph,with edges representing correlations between plants to capture spatial dependencies.The model comprises multiple Sparse Attention-based Adaptive Spatio-Temporal(SAAST)blocks.The SAAST blocks include sparse temporal attention,sparse spatial attention,an adaptive Graph Convolutional Network(GCN),and a temporal convolution network(TCN).These components eliminate weak temporal and spatial correlations,better represent dynamic spatial dependencies,and further enhance prediction accuracy.Finally,multi-dimensional comparative experiments between the STGNN and other models on the DKASC PV dataset demonstrate its superior performance in terms of accuracy and goodness-of-fit for distributed PV power generation prediction.展开更多
基金supported by the State Grid Corporation of China Headquarters Science and Technology Project“Research on Key Technologies for Power System Source-Load Forecasting and Regulation Capacity Assessment Oriented towards Major Weather Processes”(4000-202355381A-2-3-XG).
文摘Photovoltaic(PV)power generation is undergoing significant growth and serves as a key driver of the global energy transition.However,its intermittent nature,which fluctuates with weather conditions,has raised concerns about grid stability.Accurate PV power prediction has been demonstrated as crucial for power system operation and scheduling,enabling power slope control,fluctuation mitigation,grid stability enhancement,and reliable data support for secure grid operation.However,existing prediction models primarily target centralized PV plants,largely neglecting the spatiotemporal coupling dynamics and output uncertainties inherent to distributed PV systems.This study proposes a novel Spatio-Temporal Graph Neural Network(STGNN)architecture for distributed PV power generation prediction,designed to enhance distributed photovoltaic(PV)power generation forecasting accuracy and support regional grid scheduling.This approach models each PV power plant as a node in an undirected graph,with edges representing correlations between plants to capture spatial dependencies.The model comprises multiple Sparse Attention-based Adaptive Spatio-Temporal(SAAST)blocks.The SAAST blocks include sparse temporal attention,sparse spatial attention,an adaptive Graph Convolutional Network(GCN),and a temporal convolution network(TCN).These components eliminate weak temporal and spatial correlations,better represent dynamic spatial dependencies,and further enhance prediction accuracy.Finally,multi-dimensional comparative experiments between the STGNN and other models on the DKASC PV dataset demonstrate its superior performance in terms of accuracy and goodness-of-fit for distributed PV power generation prediction.