The impact of boron on the dissolution and repairing behavior of passive films formed on S31254 super-austenitic stainless steel(SASS)was investigated.SASS was immersed in 0.5 mol/L of H_(2)SO_(4) for 0,2,6,10,and 14 ...The impact of boron on the dissolution and repairing behavior of passive films formed on S31254 super-austenitic stainless steel(SASS)was investigated.SASS was immersed in 0.5 mol/L of H_(2)SO_(4) for 0,2,6,10,and 14 days to explore the evolution of the passive film.The electrochemical impedance spectroscope(EIS),the Mott–Schottky analysis,and X-ray photoelectron spectroscope were utilized to analyze the semiconductor properties and compositions of the passive films.EIS showed a decrease and consequent increase over 14 days;the same pattern was observed for Cr_(2)O_(3) and Cr/Fe.However,the defect density of the passive film exhibited a reverse trend.The variation in film thicknesses indicated that the passive films possessed dissolution and repairing behavior.SASS passive film had a double-layer structure;the outer layer was found to be rich in Fe3+and Cr(OH)3,but low on Mo6+,while the inner layer was rich in Cr_(2)O_(3) and low in Mo4+.The addition of boron increased the corrosion resistance and could promote the efficiency of the passive film repair,likely by promoting the migration of Mox+,which promoted the repairing of the passive film.展开更多
基金The research was financially supported by the National Natural Science Foundation of China(Grant Nos.U1860204,51871159 and 52104338)the Natural Science Foundation of Shanxi Province(Grant No.201901D111103).
文摘The impact of boron on the dissolution and repairing behavior of passive films formed on S31254 super-austenitic stainless steel(SASS)was investigated.SASS was immersed in 0.5 mol/L of H_(2)SO_(4) for 0,2,6,10,and 14 days to explore the evolution of the passive film.The electrochemical impedance spectroscope(EIS),the Mott–Schottky analysis,and X-ray photoelectron spectroscope were utilized to analyze the semiconductor properties and compositions of the passive films.EIS showed a decrease and consequent increase over 14 days;the same pattern was observed for Cr_(2)O_(3) and Cr/Fe.However,the defect density of the passive film exhibited a reverse trend.The variation in film thicknesses indicated that the passive films possessed dissolution and repairing behavior.SASS passive film had a double-layer structure;the outer layer was found to be rich in Fe3+and Cr(OH)3,but low on Mo6+,while the inner layer was rich in Cr_(2)O_(3) and low in Mo4+.The addition of boron increased the corrosion resistance and could promote the efficiency of the passive film repair,likely by promoting the migration of Mox+,which promoted the repairing of the passive film.