Catalytic aryl ether C—O bonds hydrogenolysis was an important route to convert lignite into high valueadded chemicals.Solid super acid 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) catalysts were successfully synthesized and evalua...Catalytic aryl ether C—O bonds hydrogenolysis was an important route to convert lignite into high valueadded chemicals.Solid super acid 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) catalysts were successfully synthesized and evaluated their performance in catalytic hydrolysis of lignite derivatives.The excellent performance of 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) stems from the synergistic interaction between metallic and acidic sites.Specifically,the acidic sites generated by S_(2)O_(8)^(2-) facilitate the adsorption of O atoms in the substrate,whereas the metal sites optimize the process of hydrogen adsorption and activation and promote the generation of hydrogen radicals,which further enhances the ability to break C—O bonds.Thus,10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) exhibits more significantcatalytic activity compared to 10%Ni-ZrO_(2) prepared from pure ZrO_(2) as a support.Characterization results showed that the 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) catalyst prepared by sodium borohydride reduction method presented a uniform pore structure,which effectively promoted the dispersion of metal Ni on the catalyst surface.Complete conversion of diphenyl ether(DPE)can be achieved under relatively mild conditions,and excellent hydrogenolysis activity is also demonstrated for other lignite derivatives containing C—O bonds.The possible reaction mechanism of DPE hydrogenolysis in the H_(2)-isopropanol system was investigated.This work represents a significantstep forward in the design of highly efficientsolid super acid catalysts.展开更多
A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of app...A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of appropriate amounts of Ce into the catalyst was beneficial to the formation of sole tetragonal ZrO2 and effectively prevented from the formation of monoclinic ZrO〉 and restrained the loss of sulfated species. XRD revealed the presence of tetragonal Ce0.16Zr0.84O2phase in the case of S2O8^2-/ZrO2-CeO2 calcined above 500 ℃. Catalytic activities of S2O8^2-/ZrO2-CeO2 for the esterification of lactic acid with n-butanol was studied. The results showed that the optimum conditions were as follows: calcination temperature of the catalyst 600 ℃, n(lactic acid):n(n-butyl alcohol)=1.0:3.0, w(S2O8^2-/ZrO2- CeO2)=12.0%, reaction temperature 145 ℃, and reaction time 2 h. The esterification efficiency of lactic acid was about 96.6%.展开更多
A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
The preparation of peroxodisulfated zirconia titania(PSZT) solid super acid has been investigated as function of molar ratio of Ti to Zr, impregnation time, calcination time and temperature in esterification of maleic...The preparation of peroxodisulfated zirconia titania(PSZT) solid super acid has been investigated as function of molar ratio of Ti to Zr, impregnation time, calcination time and temperature in esterification of maleic anhydride with n octanol. The highest yield of dioctyl maleate was 98 2% at the optimum reaction conditions.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB4101100)the National Natural Science Foundation of China(22178375 and 22478414)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Catalytic aryl ether C—O bonds hydrogenolysis was an important route to convert lignite into high valueadded chemicals.Solid super acid 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) catalysts were successfully synthesized and evaluated their performance in catalytic hydrolysis of lignite derivatives.The excellent performance of 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) stems from the synergistic interaction between metallic and acidic sites.Specifically,the acidic sites generated by S_(2)O_(8)^(2-) facilitate the adsorption of O atoms in the substrate,whereas the metal sites optimize the process of hydrogen adsorption and activation and promote the generation of hydrogen radicals,which further enhances the ability to break C—O bonds.Thus,10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) exhibits more significantcatalytic activity compared to 10%Ni-ZrO_(2) prepared from pure ZrO_(2) as a support.Characterization results showed that the 10%Ni-S_(2)O_(8)^(2-)=ZrO_(2) catalyst prepared by sodium borohydride reduction method presented a uniform pore structure,which effectively promoted the dispersion of metal Ni on the catalyst surface.Complete conversion of diphenyl ether(DPE)can be achieved under relatively mild conditions,and excellent hydrogenolysis activity is also demonstrated for other lignite derivatives containing C—O bonds.The possible reaction mechanism of DPE hydrogenolysis in the H_(2)-isopropanol system was investigated.This work represents a significantstep forward in the design of highly efficientsolid super acid catalysts.
基金supported by the Science and Technique Foundation of Shaaxi Province of China (2008K07-32)the Foundation of Shaanxi Educa- tional Committee of China (08JK228)the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of appropriate amounts of Ce into the catalyst was beneficial to the formation of sole tetragonal ZrO2 and effectively prevented from the formation of monoclinic ZrO〉 and restrained the loss of sulfated species. XRD revealed the presence of tetragonal Ce0.16Zr0.84O2phase in the case of S2O8^2-/ZrO2-CeO2 calcined above 500 ℃. Catalytic activities of S2O8^2-/ZrO2-CeO2 for the esterification of lactic acid with n-butanol was studied. The results showed that the optimum conditions were as follows: calcination temperature of the catalyst 600 ℃, n(lactic acid):n(n-butyl alcohol)=1.0:3.0, w(S2O8^2-/ZrO2- CeO2)=12.0%, reaction temperature 145 ℃, and reaction time 2 h. The esterification efficiency of lactic acid was about 96.6%.
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.
文摘The preparation of peroxodisulfated zirconia titania(PSZT) solid super acid has been investigated as function of molar ratio of Ti to Zr, impregnation time, calcination time and temperature in esterification of maleic anhydride with n octanol. The highest yield of dioctyl maleate was 98 2% at the optimum reaction conditions.