期刊文献+
共找到2,022篇文章
< 1 2 102 >
每页显示 20 50 100
基于时频图和时序特征组合的电能质量复合扰动识别
1
作者 毕贵红 刘大卫 +2 位作者 陈仕龙 张维 陈世轲 《电气技术》 2026年第1期9-19,共11页
针对电能质量扰动(PQDs)识别难题,本文提出一种基于LIRC-BiLSTM的双分支多模态融合轻量化识别模型。该模型首先对原始PQDs信号进行S变换,生成时频图像并作为卷积注意力模块(CBAM)支路输入;同时,将原始PQDs一维时序信号向量输入双向长短... 针对电能质量扰动(PQDs)识别难题,本文提出一种基于LIRC-BiLSTM的双分支多模态融合轻量化识别模型。该模型首先对原始PQDs信号进行S变换,生成时频图像并作为卷积注意力模块(CBAM)支路输入;同时,将原始PQDs一维时序信号向量输入双向长短期记忆网络(BiLSTM)支路。在CBAM支路中,采用多尺度特征提取模块提取不同分辨率的图像特征,再引入CBAM自适应增强通道与空间关注信息,以聚焦时频图像的关键模式与整体趋势;在BiLSTM支路中,先对时序矩阵进行轻量卷积预处理,再送入BiLSTM,并通过自注意力机制对时序特征进行强化。最后,将两条支路的输出进行时频特征和时序特征融合,完成PQDs类型判别。仿真实验表明,所提LIRC-BiLSTM模型能够有效融合时频图像与时序细节信息,显著提升了对多类电能质量扰动的识别准确率与抗噪性能。 展开更多
关键词 电能质量扰动 S变换 多模态特征融合 深度学习
在线阅读 下载PDF
Fractional S-transform-part 2:Application to reservoir prediction and fluid identification
2
作者 杜正聪 胥德平 张金明 《Applied Geophysics》 SCIE CSCD 2016年第2期343-352,419,共11页
The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals... The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method. 展开更多
关键词 fractional s-transform FASTICA fractional time-frequency analysis spectral decomposition
在线阅读 下载PDF
基于VMD-MSSST时频增强和ResNet多模态融合的故障诊断方法
3
作者 冯煜尧 刘承全 +3 位作者 张雨璠 薛亚晨 郑小霞 符杨 《机电工程》 北大核心 2026年第1期73-81,148,共10页
针对振动信号的非线性、非平稳性导致的故障特征提取与诊断难的问题,提出了一种基于VMD-MSSST时频增强和ResNet多模态融合的诊断方法。首先,利用变分模态分解将振动信号分解为多个本征模态函数,结合峭度与相关系数设定筛选准则,提取了... 针对振动信号的非线性、非平稳性导致的故障特征提取与诊断难的问题,提出了一种基于VMD-MSSST时频增强和ResNet多模态融合的诊断方法。首先,利用变分模态分解将振动信号分解为多个本征模态函数,结合峭度与相关系数设定筛选准则,提取了包含故障信息的有效模态,对信号进行了重构,并引入了多重同步挤压S变换,进行了时频特征增强,将能量集中到瞬时频率轨迹上,实现了对冲击故障特征的精准提取目的;然后,构建了多模态特征融合的故障诊断模型,利用ResNet提取了时频图像的深层空间特征、双向门控循环支路捕获时序特征、卷积注意力支路强化故障敏感频带,并在特征层对信息进行了融合;最后,以凯斯西储大学的轴承故障数据集为研究对象,对十种不同状态的振动信号进行了消融实验和对比实验,并在风机现场轴承数据上和传统方法进行了诊断对比。研究结果表明:采用基于VMD-MSSST时频增强和ResNet多模态融合的诊断方法,平均分类精度可达99.19%;通过可视化分析验证了该方法能实现故障特征的清晰聚类目标,说明VMD预处理与MSSST增强的协同作用能更有效地提取故障特征信息,双分支融合结构可实现模型对信号特征的充分挖掘目的,为复杂工况下的轴承故障诊断提供参考。 展开更多
关键词 故障诊断模型 滚动轴承 变分模态分解 多重同步挤压S变换 残差网络 门控循环单元 注意力模块
在线阅读 下载PDF
全球供应链发展趋势及对策研究
4
作者 彭新良 余云 +2 位作者 陈啸风 马天琦 殷积锋 《供应链管理》 2026年第1期7-17,共11页
文章旨在分析全球供应链在多重因素影响下的重构逻辑与发展方向。研究采用全球视野与中国实践相结合的视角,通过剖析地缘政治、技术创新、关税政策与可持续发展等核心变量的交互作用,揭示全球供应链在区域化、复杂化、数智化与绿色化等... 文章旨在分析全球供应链在多重因素影响下的重构逻辑与发展方向。研究采用全球视野与中国实践相结合的视角,通过剖析地缘政治、技术创新、关税政策与可持续发展等核心变量的交互作用,揭示全球供应链在区域化、复杂化、数智化与绿色化等方面的演进特征。文章总结了全球供应链从全球化粗放布局向区域化精细协同、从单一成本驱动向多元韧性网络、从传统要素驱动向数智化创新驱动、从资源消耗型向绿色可持续发展的转型路径,并阐释了中国在“双循环”“新质生产力”“多元布局”与“绿色技术”等的战略实践与创新贡献。最后,提出构建开放包容、多元韧性、智能绿色全球供应链体系的对策建议,为全球供应链成员提供兼具理论深度与实践价值的战略参考。 展开更多
关键词 全球供应链 供应链重构 数智化转型 绿色供应链 中国战略
在线阅读 下载PDF
Enhancing the resolution of seismic data based on the generalized S-transform 被引量:3
5
作者 Tian Jianhua Song Wei Yang Feizhou 《Petroleum Science》 SCIE CAS CSCD 2009年第2期153-157,共5页
In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as ... In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as in the conventional resolution-enhanced techniques, the wavelet which changes with time and frequency was simulated and eliminated. After using the inverse S-transform for the processed instantaneous spectrum, the signal in the time domain was obtained again with a more balanced spectrum and broader frequency band. The quality of seismic data was improved without additional noise. 展开更多
关键词 Time-frequency domain generalized s-transform spectrum modeling instantaneous spectrum balanced spectrum
原文传递
High impedance fault detection in distribution network based on S-transform and average singular entropy 被引量:4
6
作者 Xiaofeng Zeng Wei Gao Gengjie Yang 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期64-80,共17页
When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform... When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions. 展开更多
关键词 High impedance fault(HIF) Wavelet packet transform(WPT) s-transform(ST) Singular entropy(SE)
在线阅读 下载PDF
A Protection Method of VSC-HVDC Cables Based on Generalized S-Transform 被引量:3
7
作者 Weishi Man Xiaoman Bei Zhiyu Zhang 《Energy and Power Engineering》 2021年第4期1-10,共10页
<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics o... <div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics of different frequency components in the signal. In this paper, a novel protection method for VSC-HVDC (Voltage source converter based high voltage DC) based on Generalized S-transform is proposed. Firstly, extracting frequency component of fault current by Generalized S-transform and using mutation point of high frequency to determine the fault time. Secondly, using the zero-frequency component of fault current to eliminate disturbances. Finally, the polarity of sudden change currents in the two terminals is employed to discriminate the internal and external faults. Simulations in PSCAD/EMTDC and MATLAB show that the proposed method can distinguish faults accurately and effectively. </div> 展开更多
关键词 Generalized s-transform VSC-HVDC Phase-Mode Transformation DC Cable Protection
在线阅读 下载PDF
Detection and correction of level echo based on generalized S-transform and singular value decomposition 被引量:1
8
作者 ZHU Tianliang WANG Xiaopeng WANG Qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期442-448,共7页
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material... The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S. 展开更多
关键词 echo signal false echo generalized s-transform singular value decomposition(SVD) level measurement
在线阅读 下载PDF
Comparison of ICA and WT with S-transform based method for removal of ocular artifact from EEG signals 被引量:1
9
作者 Kedarnath Senapati Aurobinda Routray 《Journal of Biomedical Science and Engineering》 2011年第5期341-351,共11页
Ocular artifacts are most unwanted disturbance in electroencephalograph (EEG) signals. These are characterized by high amplitude but have overlap-ping frequency band with the useful signal. Hence, it is difficult to r... Ocular artifacts are most unwanted disturbance in electroencephalograph (EEG) signals. These are characterized by high amplitude but have overlap-ping frequency band with the useful signal. Hence, it is difficult to remove the ocular artifacts by traditional filtering methods. This paper proposes a new approach of artifact removal using S-transform (ST). It provides an instantaneous time-frequency repre-sentation of a time-varying signal and generates high magnitude S-coefficients at the instances of abrupt changes in the signal. A threshold function has been defined in S-domain to detect the artifact zone in the signal. The artifact has been attenuated by a suitable multiplying factor. The major advantage of ST-fil- tering is that the artifacts may be removed within a narrow time-window, while preserving the frequency information at all other time points. It also preserves the absolutely referenced phase information of the signal after the removal of artifacts. Finally, a com-parative study with wavelet transform (WT) and in-dependent component analysis (ICA) demonstrates the effectiveness of the proposed approach. 展开更多
关键词 EEG OCULAR ARTIFACT s-transform WAVELET Transform INDEPENDENT Component Analysis
暂未订购
Application of S-transform threshold filtering in Anhui experiment airgun sounding data de-noising 被引量:1
10
作者 Chenglong Zheng Xiaofeng Tian +2 位作者 Zhuoxin Yang Shuaijun Wang Zhenyu Fan 《Geodesy and Geodynamics》 2018年第4期320-327,共8页
As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following charac... As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted. 展开更多
关键词 S transform Time-frequency filtering Airgun data Threshold filtering DE-NOISING
原文传递
S-transformation based integrated approach for spectrum estimation, storage, and sensing in cognitive radio
11
作者 Pyari Mohan Pradhan Ganapati Panda 《Digital Communications and Networks》 SCIE 2019年第3期160-169,共10页
Cognitive Radio (CR) uses the principle of dynamic spectrum allocation to improve the utilization of spectrum bands. The estimation of missing data is essential for maintaining an uninterrupted quality of service in t... Cognitive Radio (CR) uses the principle of dynamic spectrum allocation to improve the utilization of spectrum bands. The estimation of missing data is essential for maintaining an uninterrupted quality of service in the CR. However, the existing methods are not suitable for interpolating missing data in high frequency signals. The storage of spectrum occupancy information is crucial for learning the spectrum usage and prediction. The existing techniques for wideband spectrum sensing suffer from poor edge detection capabilities. This paper proposes an STransformation (ST) based approach to solve these problems. For missing samples, the proposed method improves the accuracy of estimation. The ST can also be used to store the spectrum occupancy information. The simulation results show that the proposed scheme outperforms others by improving the accuracy of edge detection. Further, the simple implementation of the ST in the frequency domain is an advantage for the real time application. 展开更多
关键词 Cognitive radio s-transformation MISSING data estimation Wideband SENSING Spectrum OCCUPANCY
在线阅读 下载PDF
Characteristic Analysis of White Gaussian Noise in S-Transformation Domain
12
作者 Xinliang Zhang Yue Qi Mingzhe Zhu 《Journal of Computer and Communications》 2014年第2期20-24,共5页
The characteristic property of white Gaussian noise (WGN) is derived in S-transformation domain. The results show that the distribution of normalized S-spectrum of WGN follows X2?distribution with two degrees of freed... The characteristic property of white Gaussian noise (WGN) is derived in S-transformation domain. The results show that the distribution of normalized S-spectrum of WGN follows X2?distribution with two degrees of freedom. The conclusion has been confirmed through both theoretical derivations and numerical simulations. Combined with different criteria, an effective signal detection in S-transformation can be realized. 展开更多
关键词 Signal Detection s-transform WHITE GAUSSIAN Noise X2 Distribution
在线阅读 下载PDF
Recognition of Hybrid PQ Disturbances Based on Multi-Resolution S-Transform and Decision Tree
13
作者 Feng Zhao Di Liao +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2023年第5期1133-1148,共16页
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult... Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference. 展开更多
关键词 Hybrid power quality disturbances disturbances recognition multi-resolution s-transform decision tree
在线阅读 下载PDF
Power Supply Quality Analysis Using S-Transform and SVM Classifier
14
作者 Jiaqi Li M. V. Chilukuri 《Journal of Power and Energy Engineering》 2014年第4期438-447,共10页
In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to det... In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to detect and localize PQ events via S-Transform by visual inspection. Then five significant features of the PQ disturbances are extracted from the S-Transform output. Afterwards, PQ disturbance samples with the five features are fed to SVM for training and automatic classification. Besides, particle swarm optimization is implemented to improve the performance of SVM. The results of the classification indicate that SVM classifier is an effective mechanism to detect and classify power quality disturbances. 展开更多
关键词 POWER QUALITY DISTURBANCE s-transform SVM
暂未订购
基于多元同步压缩广义S变换的电力系统次同步振荡源定位 被引量:2
15
作者 姜涛 张鹏 +2 位作者 李雪 刘博涵 李国庆 《电力系统自动化》 北大核心 2025年第9期135-145,共11页
快速、准确的次同步振荡源定位对电力系统安全稳定运行意义重大,现有次同步振荡源定位方法难以适用于多模态时变的次同步振荡场景,且计算效率有待提升。为此,提出一种基于多元同步压缩广义S变换(MSSGST)的电力系统次同步振荡源定位方法... 快速、准确的次同步振荡源定位对电力系统安全稳定运行意义重大,现有次同步振荡源定位方法难以适用于多模态时变的次同步振荡场景,且计算效率有待提升。为此,提出一种基于多元同步压缩广义S变换(MSSGST)的电力系统次同步振荡源定位方法。首先,在自适应变化的量测滑动时间窗内计算能量比系数,实时检测系统次同步振荡现象,针对检测到的次同步振荡现象,以节点为单元构建联合量测信息矩阵,进而采用MSSGST对联合量测信息矩阵同步分解得到联合时频矩阵。然后,利用脊线提取技术筛选并重组可表征系统次同步振荡模式的MSSGST系数矩阵。在此基础上,推导基于MSSGST的时-频域暂态能量流计算模型,根据系统次同步振荡期间时-频域能量特性构建振荡源定位指标进行振荡溯源。最后,通过仿真数据和实际电网次同步振荡实测数据验证了所提方法的准确性和有效性。 展开更多
关键词 次同步振荡 振荡源定位 多元同步压缩广义S变换 暂态能量流
在线阅读 下载PDF
基于SAO-VMD-S的双端柔性直流输电故障测距方案 被引量:1
16
作者 王思华 王羚佰 《电力系统保护与控制》 北大核心 2025年第1期1-12,共12页
针对柔性直流输电线路故障定位过程中信号易受噪声干扰、耐过渡电阻能力差的问题,提出了采用小波变换(wavelet transform,WT)进行消噪处理、并结合变分模态分解(variational mode decomposition,VMD)的柔性直流输电线路故障定位方案。... 针对柔性直流输电线路故障定位过程中信号易受噪声干扰、耐过渡电阻能力差的问题,提出了采用小波变换(wavelet transform,WT)进行消噪处理、并结合变分模态分解(variational mode decomposition,VMD)的柔性直流输电线路故障定位方案。首先利用基于Logistic函数的循环位移小波阈值去噪对故障信号进行处理。然后采用雪消融优化器(snow ablation optimizer,SAO)结合VMD对信号进行有效分解。最后对分解后的高频分量进行S变换(S-transform,ST),选取对应频率下的幅值曲线进行波头标定。此外,提出了一种不依赖波速的测距算法。在PSCAD/EMTDC平台中搭建双端柔性直流系统并进行仿真验证。结果表明,所提方案不仅对采样率要求低,且能耐受300Ω的过渡电阻和30 dB的噪声,在不同故障距离下均能准确进行测距。 展开更多
关键词 柔性直流输电 小波去噪 雪消融优化器 变分模态分解 S变换 故障测距
在线阅读 下载PDF
基于广义S变换及雷克子波谱的时变谱模拟反褶积
17
作者 李文平 马洪涛 +5 位作者 刁新东 冯家元 何幼娟 方芹 顾维力 娄大娜 《断块油气田》 北大核心 2025年第2期251-258,共8页
复杂油气藏勘探开发难度的增加,要求地震资料有较高的分辨率,以提高薄储层的识别精度。反褶积技术是一种通过压缩地震子波、恢复反射系数以提高地震分辨率的方法。文中在常规多项式谱模拟反褶积的基础上,提出了一种新的雷克子波振幅谱... 复杂油气藏勘探开发难度的增加,要求地震资料有较高的分辨率,以提高薄储层的识别精度。反褶积技术是一种通过压缩地震子波、恢复反射系数以提高地震分辨率的方法。文中在常规多项式谱模拟反褶积的基础上,提出了一种新的雷克子波振幅谱模拟目标函数,在考虑地震子波特点的同时,避免了常规处理中对拟合参数的选择,减少了人为因素的影响,提高了谱模拟的精度和效率。此外,在非时变和加窗时变谱模拟反褶积的基础上,结合广义S变换,进一步提出了时频域的时变谱模拟反褶积技术。该研究对简单理论模型、随机反射系数和实际资料进行了处理,对比了不同子波函数时变、非时变以及广义S变换的处理效果,最终结果验证了文中方法比常规方法具有更好的提高分辨率效果。 展开更多
关键词 广义S变换 雷克子波 谱模拟 反褶积 高分辨率地震勘探
在线阅读 下载PDF
基于时频图像组合和DenseNet-CPSAMs的电能质量复合扰动识别
18
作者 毕贵红 杨楠 +3 位作者 刘大卫 杨毅 陈冬静 陈仕龙 《电力系统保护与控制》 北大核心 2025年第17期156-168,共13页
针对新一代电力系统的电能质量扰动(power quality disturbances, PQDs)识别难题,提出一种改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decompositiom with adaptive noise, ICEEMDAN)、两种模态... 针对新一代电力系统的电能质量扰动(power quality disturbances, PQDs)识别难题,提出一种改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decompositiom with adaptive noise, ICEEMDAN)、两种模态时频图组合和DenseNet-CPSAMs深度学习模型结合的PQDs识别新方法。首先,提出ICEEMDAN分解PQDs信号,并重构分量。其次,通过同步提取变换(synchroextracting transform, SET)和S变换(Stockwell transform,ST)生成对应时频图,组合为6通道输入张量。最后,引入DenseNet-CPSAMs深度学习模型,融合了密集连接卷积神经网络(densely connected convolutional networks, DenseNet)、通道注意力机制(channel attention mechanism,CAM)与并行空间注意力机制(parallel spatial attention mechanisms, PSAMs),实现融合时频图特征深度提取与强化识别。相比于DenseNet-121模型,DenseNet-CPSAMs模型方法在成功减少模型参数6.5 M的同时,在20 dB高信噪比条件下对31类扰动的平均识别率为99.645%,仿真实验表明该方法特征提取能力强、抗噪性能好,并且对复合扰动识别率高。 展开更多
关键词 电能质量扰动 ICEEMDAN 同步提取变换 S变换 DenseNet 深度学习
在线阅读 下载PDF
如何提升高校科技成果转化绩效——基于TOE框架的组态分析 被引量:8
19
作者 张亚明 赵科 《晓庄学院教育科学学报》 北大核心 2025年第1期80-90,共11页
高校是科技成果的重要产出地,如何提升高校科技成果转化绩效是亟待解决的现实问题。以河北省23所高校为案例,基于TOE框架理论,运用fsQCA方法探究技术、组织、环境层面要素对高校科技成果转化绩效的多重并发影响,研究发现:高校科技成果... 高校是科技成果的重要产出地,如何提升高校科技成果转化绩效是亟待解决的现实问题。以河北省23所高校为案例,基于TOE框架理论,运用fsQCA方法探究技术、组织、环境层面要素对高校科技成果转化绩效的多重并发影响,研究发现:高校科技成果转化绩效不受单一必要条件影响,但人力技术水平、技术创新能力和政府支持力度是驱动转化绩效提升的核心条件;存在4种高转化绩效条件组态和2种非高转化绩效条件组态,二者具有非对称性,其中技术创新能力和机构制度环境缺失是导致非高转化绩效的重要原因;在一定条件下组织要素可与技术创新能力发挥等效作用,且TOE因素可按重要程度排列为“技术>环境>组织”。研究结论为高校制定科技成果转化绩效提升策略提供了参考,有助于实现教育、科技与经济协同联动,进一步深化产教融合。 展开更多
关键词 高校科技成果转化 TOE框架 组态路径 产教融合
在线阅读 下载PDF
新质生产力跃迁之钥:高校科技成果转化的驱动路径与门槛效应 被引量:12
20
作者 张天雪 许志通 马银琦 《中国高教研究》 北大核心 2025年第1期83-91,共9页
基于2012—2021年的省级面板数据,探究高校科技成果转化对新质生产力发展的影响机制。结果表明:高校科技成果转化能够驱动新质生产力发展,并通过人才集聚和区域创新、创业发挥中介效应,产业结构升级和高新技术产业集聚起正向调节作用;... 基于2012—2021年的省级面板数据,探究高校科技成果转化对新质生产力发展的影响机制。结果表明:高校科技成果转化能够驱动新质生产力发展,并通过人才集聚和区域创新、创业发挥中介效应,产业结构升级和高新技术产业集聚起正向调节作用;产学研合作和政府支持在其中呈现边际效益递增的门槛效应,且存在金融发展水平的最优区间。据此,应以促进科技、数字及绿色生产力协调发展为着力点,打造全面支持高校科技成果转化的优质生态;科学调整产业布局以主动牵引和承接成果外溢,打通科技成果产业化梗阻;打好科技成果转化与产学研深度融合“组合拳”,积极探求新质生产力提升的最优金融支持区间;建构差异化高校科技成果转化支持体系,鼓励区域间错位发展。 展开更多
关键词 高校科技成果转化 新质生产力 人才集聚 区域创新创业
原文传递
上一页 1 2 102 下一页 到第
使用帮助 返回顶部