The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties oflk,singular values of rea...The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties oflk,singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest lk,S-singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest lk,s- singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.展开更多
We give a Brualdi-type Z-eigenvalue inclusion set of tensors,and prove that it is tighter than the inclusion set given by G.Wang,G.L.Zhou,and L.Caccetta[Discrete Contin.Dyn.Syst.Ser.B,2017,22:187–198]in a special cas...We give a Brualdi-type Z-eigenvalue inclusion set of tensors,and prove that it is tighter than the inclusion set given by G.Wang,G.L.Zhou,and L.Caccetta[Discrete Contin.Dyn.Syst.Ser.B,2017,22:187–198]in a special case.We also give an inclusion set for l^k,s-singular values of rectangular tensors.展开更多
针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模...针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模糊C均值聚类算法进行前件辨识,并利用奇异值分解(singular value decomposition, SVD)算法进行后件辨识,所建立模型的有效性通过拟合度仿真加以验证。随后,在所建立的T-S模糊模型的基础上结合预测控制方法对PLZT驱动器的光致应变位移进行闭环控制,并对该算法进行仿真验证。仿真结果显示,在PLZT驱动器微位移的控制中,该文控制算法减小了基于ON-OFF控制策略下的抖振,且具有更好的控制效果。展开更多
针对传统被动式检测方法存在较大检测盲区(Non-detection Zone,NDZ)、阈值难以确定以及易受电能质量扰动影响的缺陷,研究了一种基于奇异值分解(Singular Value Decomposition,SVD)和神经网络的被动式孤岛检测方法。该方法首先对公共连接...针对传统被动式检测方法存在较大检测盲区(Non-detection Zone,NDZ)、阈值难以确定以及易受电能质量扰动影响的缺陷,研究了一种基于奇异值分解(Singular Value Decomposition,SVD)和神经网络的被动式孤岛检测方法。该方法首先对公共连接点(Point of Common Coupling,PCC)处电压和逆变器输出电流进行S变换,提取相应的谐波幅值后,对其进行SVD并构成特征向量,最后运用BP神经网络对孤岛以及非孤岛情况进行分类识别。仿真结果表明,该方法可以有效检测出功率平衡情况下发生的孤岛,而且能防止电能质量扰动对检测准确性的影响,具有很高的准确性、可靠性和实用性。展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371109, 11426075), the Natural Science Foundation of Heilongjiang Province (No. QC2014C001), and the Fundamental Research Funds for the Central Universities.
文摘The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties oflk,singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest lk,S-singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest lk,s- singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.11801115)the Youth Science Foundation of Heilongjiang Province of China(No.QC2018002)the Fundamental Research Funds for Central Universities.
文摘We give a Brualdi-type Z-eigenvalue inclusion set of tensors,and prove that it is tighter than the inclusion set given by G.Wang,G.L.Zhou,and L.Caccetta[Discrete Contin.Dyn.Syst.Ser.B,2017,22:187–198]in a special case.We also give an inclusion set for l^k,s-singular values of rectangular tensors.
文摘针对目前ON-OFF控制策略在PLZT驱动器光致应变位移的闭环伺服控制系统中的缺点,提出了一种基于T-S模糊模型的PLZT驱动器应变位移的动态模型及预测控制方法。首先,建立了PLZT驱动器光致应变位移的T-S模糊模型,该模型利用基于减法聚类的模糊C均值聚类算法进行前件辨识,并利用奇异值分解(singular value decomposition, SVD)算法进行后件辨识,所建立模型的有效性通过拟合度仿真加以验证。随后,在所建立的T-S模糊模型的基础上结合预测控制方法对PLZT驱动器的光致应变位移进行闭环控制,并对该算法进行仿真验证。仿真结果显示,在PLZT驱动器微位移的控制中,该文控制算法减小了基于ON-OFF控制策略下的抖振,且具有更好的控制效果。
文摘针对传统被动式检测方法存在较大检测盲区(Non-detection Zone,NDZ)、阈值难以确定以及易受电能质量扰动影响的缺陷,研究了一种基于奇异值分解(Singular Value Decomposition,SVD)和神经网络的被动式孤岛检测方法。该方法首先对公共连接点(Point of Common Coupling,PCC)处电压和逆变器输出电流进行S变换,提取相应的谐波幅值后,对其进行SVD并构成特征向量,最后运用BP神经网络对孤岛以及非孤岛情况进行分类识别。仿真结果表明,该方法可以有效检测出功率平衡情况下发生的孤岛,而且能防止电能质量扰动对检测准确性的影响,具有很高的准确性、可靠性和实用性。