期刊文献+
共找到62,851篇文章
< 1 2 250 >
每页显示 20 50 100
新解码器的CNNs-Transformers融合网络及其病理图像肿瘤分割应用 被引量:1
1
作者 马丽晶 王朝立 +2 位作者 孙占全 程树群 王康 《小型微型计算机系统》 北大核心 2025年第6期1442-1449,共8页
病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然... 病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然而,目前大多数的网络更注重如何在编码器部分提取更准确的特征,而对于同等重要的解码器部分的结构设计研究则稍显不足.针对该问题,本文提出了由三类上采样模块组成的新网络,而编码器部分采用Swin Transformer和ConvNeXt作为网络的双分支并行独立结构.三类上采样模块分别是多重转置卷积采样、双线性上采样和Swin Transformer上采样,其特点是可以充分利用病理图像特征之间局部和全局的依赖关系.该网络分别在肝癌数据集和GLAS数据集上进行了验证,并与不同类型的主流网络进行了对比,性能指标皆达到比较好的结果. 展开更多
关键词 医学图像分割 深度学习 卷积神经网络 Swin Transformer
在线阅读 下载PDF
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
2
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 Visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
何以优课--基于S-T分析法的高校优质课教学过程分析
3
作者 王嵘 秦梦瑶 《运城学院学报》 2025年第3期85-89,共5页
S-T分析法是一种图形化展示教学风格的有效工具,可为课堂教学评估提供参考依据。本研究通过目的性抽样,从“超星杯”首届吉林省本科高校智慧课堂教学创新大赛的97个获奖视频中,选出4节优质课程进行深入分析。研究结果显示,优课应呈现四... S-T分析法是一种图形化展示教学风格的有效工具,可为课堂教学评估提供参考依据。本研究通过目的性抽样,从“超星杯”首届吉林省本科高校智慧课堂教学创新大赛的97个获奖视频中,选出4节优质课程进行深入分析。研究结果显示,优课应呈现四个方面的特点:教学模式适切性、评价内容多元性、教学讲授启发性、评价方式混合性。 展开更多
关键词 s-t分析法 高校优课 课堂观察 教学评价
在线阅读 下载PDF
基于“学习金字塔”理论的小学课堂S-T分析法改进研究
4
作者 高勇 张婧 《中小学信息技术教育》 2025年第9期11-13,共3页
基于“学习金字塔”理论的S-T分析法,旨在改进传统S-T分析法由于分类较为粗略导致分析内容过于简化,及采样时间间隔不确定导致分析结论差异性较大等问题。本研究从教学行为编码、学习内容保持率、采样时间间隔等方面对传统S-T分析法进... 基于“学习金字塔”理论的S-T分析法,旨在改进传统S-T分析法由于分类较为粗略导致分析内容过于简化,及采样时间间隔不确定导致分析结论差异性较大等问题。本研究从教学行为编码、学习内容保持率、采样时间间隔等方面对传统S-T分析法进行改进。选取了小学课堂教学中出现频率较高的3种课型(讲授型、混合型和练习型)中的典型课例,从S-T曲线绘制、学习有效时间统计、Rt-Ch值质量提升等方面,验证了基于“学习金字塔”理论的S-T分析法的可行性、丰富性和真实性;通过学习方式的频次与百分比分析,不相同学习方式转换模式分析,主被动学习方式转换频次与不相同学习方式的高频次、高密度转换规律分析,精准发现课堂教学中的问题、规律。 展开更多
关键词 学习金字塔 s-t分析法 学习方式 课堂教学行为分析
在线阅读 下载PDF
High-Precision Brain Tumor Segmentation using a Progressive Layered U-Net(PLU-Net)with Multi-Scale Data Augmentation and Attention Mechanisms on Multimodal Magnetic Resonance Imaging 被引量:1
5
作者 Noman Ahmed Siddiqui Muhammad Tahir Qadri +1 位作者 Muhammad Ovais Akhter Zain Anwar Ali 《Instrumentation》 2025年第1期77-92,共16页
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr... Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies. 展开更多
关键词 brain tumor segmentation MRI machine learning BraTS deep learning model PLU-Net
原文传递
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
6
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
EILnet: An intelligent model for the segmentation of multiple fracture types in karst carbonate reservoirs using electrical image logs 被引量:1
7
作者 Zhuolin Li Guoyin Zhang +4 位作者 Xiangbo Zhang Xin Zhang Yuchen Long Yanan Sun Chengyan Lin 《Natural Gas Industry B》 2025年第2期158-173,共16页
Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventi... Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventional approach of identifying fractures using electrical image logs predominantly relies on manual processes that are not only time-consuming but also highly subjective.In addition,the heterogeneity and strong dissolution tendency of karst carbonate reservoirs lead to complexity and variety in fracture geometry,which makes it difficult to accurately identify fractures.In this paper,the electrical image logs network(EILnet)da deep-learning-based intelligent semantic segmentation model with a selective attention mechanism and selective feature fusion moduledwas created to enable the intelligent identification and segmentation of different types of fractures through electrical logging images.Data from electrical image logs representing structural and induced fractures were first selected using the sliding window technique before image inpainting and data augmentation were implemented for these images to improve the generalizability of the model.Various image-processing tools,including the bilateral filter,Laplace operator,and Gaussian low-pass filter,were also applied to the electrical logging images to generate a multi-attribute dataset to help the model learn the semantic features of the fractures.The results demonstrated that the EILnet model outperforms mainstream deep-learning semantic segmentation models,such as Fully Convolutional Networks(FCN-8s),U-Net,and SegNet,for both the single-channel dataset and the multi-attribute dataset.The EILnet provided significant advantages for the single-channel dataset,and its mean intersection over union(MIoU)and pixel accuracy(PA)were 81.32%and 89.37%,respectively.In the case of the multi-attribute dataset,the identification capability of all models improved to varying degrees,with the EILnet achieving the highest MIoU and PA of 83.43%and 91.11%,respectively.Further,applying the EILnet model to various blind wells demonstrated its ability to provide reliable fracture identification,thereby indicating its promising potential applications. 展开更多
关键词 Karst fracture identification Deep learning Semantic segmentation Electrical image logs Image processing
在线阅读 下载PDF
Upper crustal azimuthal anisotropy and seismogenic tectonics of the Hefei segment of the Tan-Lu Fault Zone from ambient noise tomography 被引量:1
8
作者 Cheng Li HuaJianYao +4 位作者 Song Luo HaiJiang Zhang LingLi Li XiaoLi Wang ShengJun Ni 《Earth and Planetary Physics》 2025年第2期253-265,共13页
The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structur... The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas. 展开更多
关键词 ambient noise tomography azimuthal anisotropy upper crust seismogenic structure the Tan-Lu Fault Zone Hefei segment
在线阅读 下载PDF
Segmented predictor-corrector reentry guidance based on an analytical profile 被引量:1
9
作者 Hui XU Guangbin CAI +2 位作者 Chaoxu MU Xin LI Hao WEI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第1期50-65,共16页
A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance m... A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method.Firstly,an altitude-energy profile is designed,and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method.The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error,which greatly accelerates the iterative speed.Then,a segmented guidance algorithm is proposed.The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold.When the energy is less than the threshold,the equidistant test method is used to calculate the bank angle command,which ensures guidance accuracy as well as computational efficiency.Additionally,an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory.Finally,the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments.Compared with the traditional integral method,the proposed method requires 75%less computation time on average and achieves a lower landing error. 展开更多
关键词 Hypersonic glide vehicle(HGV) segmented reentry guidance method Analytical profile Adaptive guidance cycle Reentry trajectory
原文传递
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
10
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
11
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism Model generalization
在线阅读 下载PDF
Successful emergency surgical intervention in acute non-STsegment elevation myocardial infarction with rupture:A case report
12
作者 Xing-Po Li Zi-Shan Wang +1 位作者 Hong-Xia Yu Shan-Shan Wang 《World Journal of Clinical Cases》 SCIE 2025年第4期41-47,共7页
BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular ... BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications. 展开更多
关键词 Acute non-ST segment elevation myocardial infarction Cardiac rupture Acute myocardial infarction Free wall rupture Case report
暂未订购
CableSAM:an efficient automatic segmentation method for aircraft cabin cables
13
作者 LING Aihua WANG Junwen +1 位作者 LU Jiaming LIU Ruyu 《Optoelectronics Letters》 2025年第3期183-187,共5页
Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins ar... Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance. 展开更多
关键词 image segmentation aircraft cabin automatic segmentation automated segmentation cabin cablesas civil aviation cabins cable segmentation knowledge distillation
原文传递
Optimized algorithm for image semantic segmentation compression algorithm in video surveillance scenarios
14
作者 ZHANG Yangmei ZHANG Xishan +1 位作者 ZHANG Shuo LI Jintao 《High Technology Letters》 2025年第2期194-203,共10页
In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant o... In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant objects such as background elements are often encoded due to environmental disturbances,resulting in the wastage of computational resources.Existing research on video coding efficiency optimization primarily focuses on optimizing encoding units during intra-frame or inter frame prediction after the generation of coding units,neglecting the optimization of video images before coding unit generation.To address this challenge,This work proposes an image semantic segmentation compression algorithm based on macroblock encoding,called image semantic segmentation compression algorithm based on macroblock encoding(ISSC-ME),which consists of three modules.(1)The semantic label generation module generates interesting object labels using a grid-based approach to reduce redundant coding of consecutive frames.(2)The image segmentation network module generates a semantic segmentation image using U-Net.(3)The macroblock coding module,is a block segmentation-based video encoding and decoding algorithm used to compress images and improve video transmission efficiency.Experimental results show that the proposed image semantic segmentation optimization algorithm can reduce the computational costs,and improve the overall accuracy by 1.00%and the mean intersection over union(IoU)by 1.20%.In addition,the proposed compression algorithm utilizes macroblock fusion,resulting in the image compression rate achieving 80.64%.It has been proven that the proposed algorithm greatly reduces data storage and transmission,and enables fast image compression processing at the millisecond level. 展开更多
关键词 macroblock encoding semantic segmentation segmentation compression
在线阅读 下载PDF
U-Net-Based Medical Image Segmentation:A Comprehensive Analysis and Performance Review
15
作者 Aliyu Abdulfatah Zhang Sheng Yirga Eyasu Tenawerk 《Journal of Electronic Research and Application》 2025年第1期202-208,共7页
Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Im... Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Imaging(MRIs),and X-rays.The introduction of U-Net in 2015 has significantly advanced segmentation capabilities,especially for small datasets commonly found in medical imaging.Since then,various modifications to the original U-Net architecture have been proposed to enhance segmentation accuracy and tackle challenges like class imbalance,data scarcity,and multi-modal image processing.This paper provides a detailed review and comparison of several U-Net-based architectures,focusing on their effectiveness in medical image segmentation tasks.We evaluate performance metrics such as Dice Similarity Coefficient(DSC)and Intersection over Union(IoU)across different U-Net variants including HmsU-Net,CrossU-Net,mResU-Net,and others.Our results indicate that architectural enhancements such as transformers,attention mechanisms,and residual connections improve segmentation performance across diverse medical imaging applications,including tumor detection,organ segmentation,and lesion identification.The study also identifies current challenges in the field,including data variability,limited dataset sizes,and issues with class imbalance.Based on these findings,the paper suggests potential future directions for improving the robustness and clinical applicability of U-Net-based models in medical image segmentation. 展开更多
关键词 U-Net architecture Medical image segmentation DSC IOU Transformer-based segmentation
在线阅读 下载PDF
Pre-trained SAM as data augmentation for image segmentation
16
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
CW-HRNet:Constrained Deformable Sampling and Wavelet-Guided Enhancement for Lightweight Crack Segmentation
17
作者 Dewang Ma 《Journal of Electronic Research and Application》 2025年第5期269-280,共12页
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke... This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks. 展开更多
关键词 Crack segmentation Lightweight semantic segmentation Deformable convolution Wavelet transform Road infrastructure
在线阅读 下载PDF
Global-Local Hybrid Modulation Network for Retinal Vessel and Coronary Angiograph Segmentation
18
作者 Pengfei Cai Biyuan Li +2 位作者 Jinying Ma Xiao Tian Jun Yan 《Journal of Bionic Engineering》 2025年第4期2050-2074,共25页
The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs a... The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs are characterized by low contrast and complex structures,posing challenges for vessel segmentation.Moreover,CNN-based approaches are limited in capturing long-range pixel relationships due to their focus on local feature extraction,while ViT-based approaches struggle to capture fine local details,impacting tasks like vessel segmentation that require precise boundary detection.To address these issues,in this paper,we propose a Global–Local Hybrid Modulation Network(GLHM-Net),a dual-encoder architecture that combines the strengths of CNNs and ViTs for vessel segmentation.First,the Hybrid Non-Local Transformer Block(HNLTB)is proposed to efficiently consolidate long-range spatial dependencies into a compact feature representation,providing a global perspective while significantly reducing computational overhead.Second,the Collaborative Attention Fusion Block(CAFB)is proposed to more effectively integrate local and global vessel features at the same hierarchical level during the encoding phase.Finally,the proposed Feature Cross-Modulation Block(FCMB)better complements the local and global features in the decoding stage,effectively enhancing feature learning and minimizing information loss.The experiments conducted on the DRIVE,CHASEDB1,DCA1,and XCAD datasets,achieving AUC values of 0.9811,0.9864,0.9915,and 0.9919,F1 scores of 0.8288,0.8202,0.8040,and 0.8150,and IOU values of 0.7076,0.6952,0.6723,and 0.6878,respectively,demonstrate the strong performance of our proposed network for vessel segmentation. 展开更多
关键词 Non-local transformer Feature fusion Collaborative attention Retinal vessel segmentation Coronary angiograph segmentation
在线阅读 下载PDF
CAMSNet:Few-Shot Semantic Segmentation via Class Activation Map and Self-Cross Attention Block
19
作者 Jingjing Yan Xuyang Zhuang +2 位作者 Xuezhuan Zhao Xiaoyan Shao Jiaqi Han 《Computers, Materials & Continua》 2025年第3期5363-5386,共24页
The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set... The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art. 展开更多
关键词 Few-shot semantic segmentation semantic segmentation meta learning
在线阅读 下载PDF
A 3D semantic segmentation network for accurate neuronal soma segmentation
20
作者 Li Ma Qi Zhong +2 位作者 Yezi Wang Xiaoquan Yang Qian Du 《Journal of Innovative Optical Health Sciences》 2025年第1期67-83,共17页
Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall... Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively. 展开更多
关键词 Neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部