期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于TimeVAE的1DCNN-S-Mamba组合模型光伏功率短期预测
1
作者 许可证 文中 王秋杰 《热力发电》 北大核心 2026年第1期122-133,共12页
针对极端天气下光伏功率预测存在的气象响应失准、突变特征捕捉困难及数据稀缺等问题,提出一种基于模糊C均值(fuzzy C-means,FCM)、最大信息系数(maximum information coefficient,MIC)、时序变分自编码器(time variational auto-encode... 针对极端天气下光伏功率预测存在的气象响应失准、突变特征捕捉困难及数据稀缺等问题,提出一种基于模糊C均值(fuzzy C-means,FCM)、最大信息系数(maximum information coefficient,MIC)、时序变分自编码器(time variational auto-encoders,TimeVAE)、一维卷积神经网络(1D convolutional neural network,1DCNN)和simple-Mamba(S-Mamba)的组合功率预测模型。首先,通过气象特征结合FCM聚类将天气划分为晴天、多云、降雪和降雨4类;然后,结合MIC筛选出最佳气象特征子集,同时针对极端天气样本匮乏问题,采用Time VAE进行数据生成,利用其分解式重构机制生成仿真数据;最后,使用1DCNN-S-Mamba组合模型通过局部卷积捕获短时突变特征,结合双向状态空间建模实现长程依赖解析进行预测。实验结果表明,该模型提升了复杂天气下光伏功率预测的时效性与准确性。相较于S-Mamba,所提模型平均绝对误差和均方根误差在降雪天气下分别降低了3.65%和5.10%。 展开更多
关键词 模糊聚类 时序变分自编码器 数据增强 一维卷积神经网络 s-mamba
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部