Photocatalytic CO_(2)reduction to sustainably product of fuels is a potential route to achieve clean energy conversion.Unfortunately,the sluggish charge transport dynamics and poor CO_(2)activation performance result ...Photocatalytic CO_(2)reduction to sustainably product of fuels is a potential route to achieve clean energy conversion.Unfortunately,the sluggish charge transport dynamics and poor CO_(2)activation performance result in a low CO_(2)conversion efficiency.Herein,we develop a multidimensional In_(2)O_(3)/In_(2)S_(3)(IO/IS)heterojunction with abundant lattice distortion structure and high concentration of oxygen defects.The close contact interfaces between the junction of the two phases ensure undisturbed transmission of electrons with high‐speed.The increased free electron concentration promotes the adsorption and activation of CO2 on the catalyst surface,leaving the key intermediate*COOH at a lower energy barrier.The perfect combination of the band matching oxide and sulfide effectively reduces the internal energy barrier of the CO2 reduction reaction.Furthermore,the lattice distortion structure not only provides additional active sites,but also optimizes the kinetics of the reaction through microstructural regulation.Remarkably,the optimal IO/IS heterojunction exhibits superior CO_(2)reduction performance with CO evolution rate of 12.22μmol g^(−1)h^(−1),achieving about 4 times compared to that of In_(2)O_(3)and In2S3,respectively.This work emphasizes the importance of tight interfaces of heterojunction in improving the performance of CO_(2)photoreduction,and provides an effective strategy for construction of heterojunction photocatalysts.展开更多
文摘Photocatalytic CO_(2)reduction to sustainably product of fuels is a potential route to achieve clean energy conversion.Unfortunately,the sluggish charge transport dynamics and poor CO_(2)activation performance result in a low CO_(2)conversion efficiency.Herein,we develop a multidimensional In_(2)O_(3)/In_(2)S_(3)(IO/IS)heterojunction with abundant lattice distortion structure and high concentration of oxygen defects.The close contact interfaces between the junction of the two phases ensure undisturbed transmission of electrons with high‐speed.The increased free electron concentration promotes the adsorption and activation of CO2 on the catalyst surface,leaving the key intermediate*COOH at a lower energy barrier.The perfect combination of the band matching oxide and sulfide effectively reduces the internal energy barrier of the CO2 reduction reaction.Furthermore,the lattice distortion structure not only provides additional active sites,but also optimizes the kinetics of the reaction through microstructural regulation.Remarkably,the optimal IO/IS heterojunction exhibits superior CO_(2)reduction performance with CO evolution rate of 12.22μmol g^(−1)h^(−1),achieving about 4 times compared to that of In_(2)O_(3)and In2S3,respectively.This work emphasizes the importance of tight interfaces of heterojunction in improving the performance of CO_(2)photoreduction,and provides an effective strategy for construction of heterojunction photocatalysts.