The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and vel...NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.展开更多
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati...In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.展开更多
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater...The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.展开更多
Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real...Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real-time automated damage detection method by developing a theory-assisted adaptive mutiagent twin delayed deep deterministic(TA2-MATD3)policy gradient algorithm.First,the theoretical framework of reinforcement-learning-driven damage detection is established.To address the disadvantages of traditional mutiagent twin delayed deep deterministic(MATD3)method,the theory-assisted mechanism and the adaptive experience playback mechanism are introduced.Moreover,a historical residential house built in 1889 was taken as an example,using its 12-month structural health monitoring data.TA2-MATD3 was compared with existing damage detection methods in terms of the convergence ratio,online computing efficiency,and damage detection accuracy.The results show that the computational efficiency of TA2-MATD3 is approximately 117–160 times that of the traditional methods.The convergence ratio of damage detection on the training set is approximately 97%,and that on the test set is in the range of 86.2%–91.9%.In addition,the main apparent damages found in the field survey were identified by TA2-MATD3.The results indicate that the proposed method can significantly improve the online computing efficiency and damage detection accuracy.This research can provide novel perspectives for the use of reinforcement learning methods to conduct damage detection in online structural health monitoring.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation ph...0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018).展开更多
In this study,we design and numerically investigate a novel all optical D flip-flop(AODFF)based on linear photonic crystal(LPhC)structure that is composed of optical waveguides using the finite difference time domain(...In this study,we design and numerically investigate a novel all optical D flip-flop(AODFF)based on linear photonic crystal(LPhC)structure that is composed of optical waveguides using the finite difference time domain(FDTD)method.The proposed structure has the hexagonal close packed of 16×20 circular rods that are suspended in the air substrate with a lattice constant of 606 nm.The plane wave expansion(PWE)method is used to obtain the band diagram for AODFF at an operating wavelength of 1550 nm.The proposed optical flip-flop achieves a low delay time of 0.2 ps and a high contrast ratio(CR)of 10.33 dB.The main advantage of this design is that the input power as low as 1 mW/μm^(2) is sufficient for its operation,since no nonlinear rods are included.In addition,the footprint of the proposed AODFF is 100μm^(2),which is smaller compared to the structures reported in the literature,and it has a fast switching frequency of 5 Tbit/s.展开更多
The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile ...The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.展开更多
多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系...多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。展开更多
目的:验证运用有机溶剂/去污剂(S/D)处理法和干热法对C1酯酶抑制剂(C1-INH)中病毒灭活效果。方法:采用S/D处理法灭活含S/D样品中添加的辛德毕斯病毒,噬斑滴定法检测灭活前后的病毒滴度,-干热法灭活脑心肌炎病毒(EMCV)和猪细小病毒(PPV)...目的:验证运用有机溶剂/去污剂(S/D)处理法和干热法对C1酯酶抑制剂(C1-INH)中病毒灭活效果。方法:采用S/D处理法灭活含S/D样品中添加的辛德毕斯病毒,噬斑滴定法检测灭活前后的病毒滴度,-干热法灭活脑心肌炎病毒(EMCV)和猪细小病毒(PPV),细胞病变法检测灭活前后的病毒滴度。结果:经S/D处理法灭活后,3批含S/D样品中辛德毕斯病毒降低量分别为>4.35 lg PFU·mL^(-1)、>4.51 lg PFU·mL^(-1)、>4.64 lg PFU·mL^(-1)。经干热法灭活后,3批不含S/D样品中EMCV降低量分别为≥5.38 lg TCID_(50)/0.1 mL、≥5.12 lg TCID_(50)/0.1 mL、≥5.25 lg TCID_(50)/0.1 mL,PPV降低量分别为4.57 lg TCID_(50)/0.1 mL、4.18 lg TCID_(50)/0.1 mL、4.68 lg TCID_(50)/0.1 mL。结论:通过对指示病毒的验证效果评估,证明S/D法和干热法对C1-INH中的辛德毕斯病毒、EMCV和PPV均有较好的灭活效果。展开更多
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金Supported by the Foundation:This research project is jointly supported by Hebei Provincial Science and Technology Program(No.22375406D)The Earthquake Science and Technology Program of Hebei Province(No.DZ2023120500009,DZ2024120500001).
文摘NLLoc is a nonlinear search positioning method.In this study,we use simulated arrival time data to quantitatively evaluate the NLLoc method from three aspects:arrival time picking accuracy,station distribution,and velocity model.The results show that the NLLoc method exhibits high positioning accuracy and stability in terms of arrival time picking accuracy and station distribution;however,it is sensitive to the velocity model.The positioning accuracy is higher when the velocity model is smaller than the true velocity.We combined absolute and relative positioning methods.First,we use the NLLoc method for absolute positioning of seismic data and then the double difference positioning method for relative positioning to obtain a more accurate relocation result.Furthermore,we used the combined method to locate the earthquake sequence after collecting dense seismic array data on the Luanzhou M_(S)4.3 earthquake that occurred on April 16,2021,in Hebei Province.By fitting the fault plane with the relocated earthquake sequences,the results show that the strike and dip angles of the seismogenic fault of the Luanzhou M_(S)4.3 earthquake are 208.5°and 85.6°,respectively.This indicates a high-dip angle fault with North-North-East strike and North-West dip directions.Furthermore,we infer that the seismogenic fault of the Luanzhou M_(S)4.3 earthquake is the Lulong fault.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172312 and 52211540395)support from the Institut Universitaire de France(IUF).
文摘The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.
基金supported by National Key Research and Development Program of China(2023YFF0906100)National Natural Science Foundation of China(52408008)Key Research and Development Program of Jiangsu Province(BE2022833).
文摘Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real-time automated damage detection method by developing a theory-assisted adaptive mutiagent twin delayed deep deterministic(TA2-MATD3)policy gradient algorithm.First,the theoretical framework of reinforcement-learning-driven damage detection is established.To address the disadvantages of traditional mutiagent twin delayed deep deterministic(MATD3)method,the theory-assisted mechanism and the adaptive experience playback mechanism are introduced.Moreover,a historical residential house built in 1889 was taken as an example,using its 12-month structural health monitoring data.TA2-MATD3 was compared with existing damage detection methods in terms of the convergence ratio,online computing efficiency,and damage detection accuracy.The results show that the computational efficiency of TA2-MATD3 is approximately 117–160 times that of the traditional methods.The convergence ratio of damage detection on the training set is approximately 97%,and that on the test set is in the range of 86.2%–91.9%.In addition,the main apparent damages found in the field survey were identified by TA2-MATD3.The results indicate that the proposed method can significantly improve the online computing efficiency and damage detection accuracy.This research can provide novel perspectives for the use of reinforcement learning methods to conduct damage detection in online structural health monitoring.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金supported by the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2022KDZ03)the Science and Technology Projects of Yunnan Provincial Science and Technology Department(No.202401AT070328)+1 种基金the Young talents project of“Xingdian Talent Support Program”in Yunnan Province(No.YNWR-QNBJ-2020-019)the Fund Project of China Academy of Railway Sciences Co.,Ltd.(No.2021YJ178)。
文摘0 INTRODUCTION In recent years,modern railways have been actively under construction in the complex mountainous area of Southwest China.However,rockfall poses a significant threat to both construction and operation phases of railway projects(Yan et al.,2023;Chen et al.,2022;Fanos and Pradhan,2018).
文摘In this study,we design and numerically investigate a novel all optical D flip-flop(AODFF)based on linear photonic crystal(LPhC)structure that is composed of optical waveguides using the finite difference time domain(FDTD)method.The proposed structure has the hexagonal close packed of 16×20 circular rods that are suspended in the air substrate with a lattice constant of 606 nm.The plane wave expansion(PWE)method is used to obtain the band diagram for AODFF at an operating wavelength of 1550 nm.The proposed optical flip-flop achieves a low delay time of 0.2 ps and a high contrast ratio(CR)of 10.33 dB.The main advantage of this design is that the input power as low as 1 mW/μm^(2) is sufficient for its operation,since no nonlinear rods are included.In addition,the footprint of the proposed AODFF is 100μm^(2),which is smaller compared to the structures reported in the literature,and it has a fast switching frequency of 5 Tbit/s.
基金supported by the Science Technology Talents Lifting Project of Hunan Province(No.2022TJ-N16)the Natural Science Foundation of Hunan Province(Nos.2024JJ4022,2023JJ30277,2025JJ60382)+3 种基金the China Postdoctoral Fellowship Program(GZC20233205)the Scientifc Research Fund of Hunan Provincial Education Department,China(No.24B0270)the National Natural Science Foundation of China(No.32201646)the Key Project of Jiangxi Provincial Research and Development Program(No.20243BBI91001).
文摘The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.
文摘多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。
文摘目的:验证运用有机溶剂/去污剂(S/D)处理法和干热法对C1酯酶抑制剂(C1-INH)中病毒灭活效果。方法:采用S/D处理法灭活含S/D样品中添加的辛德毕斯病毒,噬斑滴定法检测灭活前后的病毒滴度,-干热法灭活脑心肌炎病毒(EMCV)和猪细小病毒(PPV),细胞病变法检测灭活前后的病毒滴度。结果:经S/D处理法灭活后,3批含S/D样品中辛德毕斯病毒降低量分别为>4.35 lg PFU·mL^(-1)、>4.51 lg PFU·mL^(-1)、>4.64 lg PFU·mL^(-1)。经干热法灭活后,3批不含S/D样品中EMCV降低量分别为≥5.38 lg TCID_(50)/0.1 mL、≥5.12 lg TCID_(50)/0.1 mL、≥5.25 lg TCID_(50)/0.1 mL,PPV降低量分别为4.57 lg TCID_(50)/0.1 mL、4.18 lg TCID_(50)/0.1 mL、4.68 lg TCID_(50)/0.1 mL。结论:通过对指示病毒的验证效果评估,证明S/D法和干热法对C1-INH中的辛德毕斯病毒、EMCV和PPV均有较好的灭活效果。