Background Right bundle branch block (RBBB) may present as slurred or notched S wave in lead V1. However, slurred or notched S wave may also represent slow conduction in the myocardium. Methods We retrospectively an...Background Right bundle branch block (RBBB) may present as slurred or notched S wave in lead V1. However, slurred or notched S wave may also represent slow conduction in the myocardium. Methods We retrospectively analyzed the QRS patterns in leads VgR to V5R in 7 patients with a slurred or notched S wave in lead V1. Results In the leads V3R to VSR, 6 patients showed incomplete or complete RBBB and 1 patient slurred or notched S wave. Conclusions In the majority of ECGs in a small patient series with slurred or notched S wave in lead V1, QRS morphology indicating incomplete or complete RBBB was present in leads V3R to VSR. A finding of fragmented QRS in these leads may indicate slow conduction in the myocardium.展开更多
Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the ...Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.展开更多
The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in ...The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in 2003 using cross-correlation coefficient method, after determining the high-resolution hypocentral locations of the earthquake sequences using the double-difference earthquake location algorithm. The results indicated that ① The phenomena of S wave splitting are obvious in the two earthquake sequences, and the average polarization directions of fast wave in most stations are almost consistent with regional maximum horizontal compressive stress direction except the station Santai. There are bimodal fast directions in the polarization directions at station Santai and the mean polarization direction is N80°E, indicating an inconsistent phenomenon referred to regional maximum horizontal compressive stress direction. ② There is no apparent relation between delay time and focal depth in the sequences, but the polarization direction show different character in different delay time range. ③ The comparison of S wave splitting results in the two earthquake sequences show that the polarization direction in M=6.2 earthquake sequence is more scattered and its average fast direction is 20° larger than that of M=6.1 sequence, and the delay times between two sequences show a little difference. ④ The spatial variation in S wave splitting polarization direction may be due to the stress disturbance imposed by the M=6.2 and the M=6.1 mainshocks on regional background stress field.展开更多
In this paper, according to the relationship of observation spectrum with source spectrum, travel-path attenuation factor and site effect, we use the digital seismic data of moderate-small earthquakes to invert the so...In this paper, according to the relationship of observation spectrum with source spectrum, travel-path attenuation factor and site effect, we use the digital seismic data of moderate-small earthquakes to invert the soft rock site effect and S wave inelastic attenuation under the constraint of site effect, and determine the parameters of path and site. The parameters obtained by this method exclude the topographic effect of seismic stations, and truly reflect the seismic effect of free soft rock sites and the S wave inelastic attenuation in the studied region. The average soft rock site effect is about 1.5 times in the frequency domain of 2-4 Hz and the S wave quality factor is obtained as Qs=278f0.346, which can be directly applied to the stochastic modeling of ground motions in the studied region.展开更多
We analyzed digital seismogram data of 5668 earthquakes that occurred in Yunnan region between July of 1999 and December of 2003. Among the 22 seismic stations, six ones, namely Baoshan, Yongsheng, Lijiang, Heqing, Yi...We analyzed digital seismogram data of 5668 earthquakes that occurred in Yunnan region between July of 1999 and December of 2003. Among the 22 seismic stations, six ones, namely Baoshan, Yongsheng, Lijiang, Heqing, Yimen, and Luquan, were selected and their attenuations of P and S waves were measured by using the extended coda-normalization method. The six stations were classified into three regions according to their location, that is, Baoshan area, Yongsheng-Lijiang-Heqing (YLH) area and Luquan-Yimen (LY) area. The values of QS-1 and QP-1 are expressed as QS-1=0.00867 f-0.86, QP-1=0.01155 f-0.93, QS-1=0.01824 f-0.92, QP-1=0.02288 f-0.92, and QS-1=0.01647 f-0.91, QP-1=0.02826 f-0.97 in Baoshan, YLH, LY areas respectively. The attenuation of YLH, LY are closer to each other, however, Baoshan area is apparently lower. Comparing attenuation in the three areas with other areas of the world using the same method, it is suggested that the attenuations of P and S waves in YLH and LY areas are close to Kanto of Japan, but much higher than southeast of South Korea. The QS-1 and QP-1 in Baoshan area are slightly higher than southeastern South Korea. Furthermore, the results indicate that our QS-1 in Yunnan area is close to others by analyzing the coda attenuation.展开更多
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha...Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.展开更多
Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inv...Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inversion approaches. The rotated correction function is applied to analyzing high quality SeS records from five earthquakes at distance of 25°-35° to obtain shear wave splitting parameters of the lithosphere. The result from the deepest earthquake among the five events indicates that the polarization of the fast shear wave is N94°E, which means the direction of extensional stress or the moving of the upper mantle mass in Xisha Islands is nearly west to east and confirms that the crust in this region is a transitional one and the driving force beneath the crust is from the moving mass consistent with the Eurasian plate. The anisotropy effective thickness is estimated about 100 km based on the time delay of 1.3 s between the fast and slow shear waves. The receiver function is applied to analyzing high quality P wave records from nine earthquakes at distance of 20°- 60° to obtain the vertical distribution pattern of shear wave velocity beneath the station. The result indicates that the crust could be divided into three layers: the uppermost crust (5 km above) is a velocity gradient zone consisting of several small layers, where the shear wave velocity increases from 1.5 to 3.5 km/s gradually; the 5 - 16 km depth interval also consiss of several small layers of which the mean velocity is about 3.8 km/s; and the lower crust ( 16.0 - 26. 5 km) is an obvious low velocity layer with a velocity of about 3.6 km/s. The buried depth of the Moho discontinuity is 26.5 kin, the mean velocity of the layers beneath the Moho is about 4.7 km/s and there is an obvious low velocity layer just beneath the Moho. Moreover, analysis of the arrival time of converted waves and the swinging variation of velocity around the initial model suggests that smaller layers in the model maybe are not reliable but the low velocity layer between 16 and 26.5 km maybe is the real one that implies the plasticity of the lower crust.展开更多
文摘Background Right bundle branch block (RBBB) may present as slurred or notched S wave in lead V1. However, slurred or notched S wave may also represent slow conduction in the myocardium. Methods We retrospectively analyzed the QRS patterns in leads VgR to V5R in 7 patients with a slurred or notched S wave in lead V1. Results In the leads V3R to VSR, 6 patients showed incomplete or complete RBBB and 1 patient slurred or notched S wave. Conclusions In the majority of ECGs in a small patient series with slurred or notched S wave in lead V1, QRS morphology indicating incomplete or complete RBBB was present in leads V3R to VSR. A finding of fragmented QRS in these leads may indicate slow conduction in the myocardium.
基金State Key Basic Development and Programming Project Mechanism and Prediction of Continental Strong Earthquakes (G1998040705).
文摘Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.
基金National Program on Key Basic Projects (2004CB418406), Program for the Tenth Five-Year Plan of China(2004BA601B01-04-03)and Joint Seismological Science Foundation of China (606042).
文摘The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in 2003 using cross-correlation coefficient method, after determining the high-resolution hypocentral locations of the earthquake sequences using the double-difference earthquake location algorithm. The results indicated that ① The phenomena of S wave splitting are obvious in the two earthquake sequences, and the average polarization directions of fast wave in most stations are almost consistent with regional maximum horizontal compressive stress direction except the station Santai. There are bimodal fast directions in the polarization directions at station Santai and the mean polarization direction is N80°E, indicating an inconsistent phenomenon referred to regional maximum horizontal compressive stress direction. ② There is no apparent relation between delay time and focal depth in the sequences, but the polarization direction show different character in different delay time range. ③ The comparison of S wave splitting results in the two earthquake sequences show that the polarization direction in M=6.2 earthquake sequence is more scattered and its average fast direction is 20° larger than that of M=6.1 sequence, and the delay times between two sequences show a little difference. ④ The spatial variation in S wave splitting polarization direction may be due to the stress disturbance imposed by the M=6.2 and the M=6.1 mainshocks on regional background stress field.
基金National Natural Science Foundation of China(50468003)State 973 Project(2002 CB412706).
文摘In this paper, according to the relationship of observation spectrum with source spectrum, travel-path attenuation factor and site effect, we use the digital seismic data of moderate-small earthquakes to invert the soft rock site effect and S wave inelastic attenuation under the constraint of site effect, and determine the parameters of path and site. The parameters obtained by this method exclude the topographic effect of seismic stations, and truly reflect the seismic effect of free soft rock sites and the S wave inelastic attenuation in the studied region. The average soft rock site effect is about 1.5 times in the frequency domain of 2-4 Hz and the S wave quality factor is obtained as Qs=278f0.346, which can be directly applied to the stochastic modeling of ground motions in the studied region.
基金The specialized fund for pre-study of national key basic study (2002CCD01700)national key project of science and technology from China Ministry of Science and Technology during the 10th Five-year Plan (2004BA601B01-04-03)
文摘We analyzed digital seismogram data of 5668 earthquakes that occurred in Yunnan region between July of 1999 and December of 2003. Among the 22 seismic stations, six ones, namely Baoshan, Yongsheng, Lijiang, Heqing, Yimen, and Luquan, were selected and their attenuations of P and S waves were measured by using the extended coda-normalization method. The six stations were classified into three regions according to their location, that is, Baoshan area, Yongsheng-Lijiang-Heqing (YLH) area and Luquan-Yimen (LY) area. The values of QS-1 and QP-1 are expressed as QS-1=0.00867 f-0.86, QP-1=0.01155 f-0.93, QS-1=0.01824 f-0.92, QP-1=0.02288 f-0.92, and QS-1=0.01647 f-0.91, QP-1=0.02826 f-0.97 in Baoshan, YLH, LY areas respectively. The attenuation of YLH, LY are closer to each other, however, Baoshan area is apparently lower. Comparing attenuation in the three areas with other areas of the world using the same method, it is suggested that the attenuations of P and S waves in YLH and LY areas are close to Kanto of Japan, but much higher than southeast of South Korea. The QS-1 and QP-1 in Baoshan area are slightly higher than southeastern South Korea. Furthermore, the results indicate that our QS-1 in Yunnan area is close to others by analyzing the coda attenuation.
基金supported by the National Science and Technology Major Project(No.2016ZX05047-002-001)
文摘Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
文摘Teleseismic datasets at the Shidao Seismographic Station, located in the northwestern South China Sea, are used to determine the earth anisotropy and the vertical distribution pattern of the shear wave velocity by inversion approaches. The rotated correction function is applied to analyzing high quality SeS records from five earthquakes at distance of 25°-35° to obtain shear wave splitting parameters of the lithosphere. The result from the deepest earthquake among the five events indicates that the polarization of the fast shear wave is N94°E, which means the direction of extensional stress or the moving of the upper mantle mass in Xisha Islands is nearly west to east and confirms that the crust in this region is a transitional one and the driving force beneath the crust is from the moving mass consistent with the Eurasian plate. The anisotropy effective thickness is estimated about 100 km based on the time delay of 1.3 s between the fast and slow shear waves. The receiver function is applied to analyzing high quality P wave records from nine earthquakes at distance of 20°- 60° to obtain the vertical distribution pattern of shear wave velocity beneath the station. The result indicates that the crust could be divided into three layers: the uppermost crust (5 km above) is a velocity gradient zone consisting of several small layers, where the shear wave velocity increases from 1.5 to 3.5 km/s gradually; the 5 - 16 km depth interval also consiss of several small layers of which the mean velocity is about 3.8 km/s; and the lower crust ( 16.0 - 26. 5 km) is an obvious low velocity layer with a velocity of about 3.6 km/s. The buried depth of the Moho discontinuity is 26.5 kin, the mean velocity of the layers beneath the Moho is about 4.7 km/s and there is an obvious low velocity layer just beneath the Moho. Moreover, analysis of the arrival time of converted waves and the swinging variation of velocity around the initial model suggests that smaller layers in the model maybe are not reliable but the low velocity layer between 16 and 26.5 km maybe is the real one that implies the plasticity of the lower crust.