Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul...Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.展开更多
We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequen...The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.展开更多
The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STF...The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.展开更多
The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Consi...The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.展开更多
This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value acco...This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value according to the characteristics of the signal samples.Signals in various impulsive noise models are considered to illustrate that the robust S transform can achieve better performance than the standard S transform.Moreover,mean square errors for instantaneous frequency estimation of the robust S transform are compared with that of the standard S transform,showing that the robust S transform can achieve significantly improved instantaneous frequency estimation for the signals in impulsive noise.展开更多
An implicit finite difference(FD)and artificial neural network(ANN)tech-niques are applied to study the triple diffusion and non-linear mixed convection flow around a vertical cone.The forced flow is due to an impulsi...An implicit finite difference(FD)and artificial neural network(ANN)tech-niques are applied to study the triple diffusion and non-linear mixed convection flow around a vertical cone.The forced flow is due to an impulsive motion of a micropolar nanofluid while the buoyancy-driven flow is obtained using the quadratic form of Boussinesq approx-imation.Two governing equations are introduced for the species concentrations;those include non-linear chemical reactions.It is focused on the cases of the weak concentration of microelements,opposing and assisting flow,and the roles of the magnetic field,viscous dissipation,and convective boundary conditions are examined.The solution methodology is based on Mangler’s transformations.At the same time,the effective ANN is used to predict some important physical quantities such as heat transfer rate against some key factors such as Biot number,Eckert number,and magnetic coefficient.Remarkably,the flow rate in the assisting flow is up to 0.95%higher than in the opposing flow.Across all cases,an increase in the vortex parameter(K Z 0:1-1:2)enhances fluid friction near the cone surface by 63.1%.These findings are particularly relevant for industrial applications involving heat and mass transfer in nanofluid systems,such as microreactors,biomedical engineering,and thermal energy storage.展开更多
Arsenic(As)speciation transformation in acid mine drainage(AMD)is comprehensively affected by biological and abiotic factors,such as microbially mediated Fe/S redox reactions and changes in environmental conditions(pH...Arsenic(As)speciation transformation in acid mine drainage(AMD)is comprehensively affected by biological and abiotic factors,such as microbially mediated Fe/S redox reactions and changes in environmental conditions(pH and oxidation-reduction potential).However,their combined impacts on arsenic speciation transformation remain poorly studied.Therefore,we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions.The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture,pH 2.0,2.5,and 3.0 are more conducive to the formation of jarosites and ferric arsenate,which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation.The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure,further infuencing the biodissolution of pyrite and the release and oxidation process of Fe/S.The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe,S,and As in solution is mainly regulated by pH and potential values,which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization.The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation,and this correlation is critically regulated by the pH conditions of the system.展开更多
针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗...针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗函数有效窗长及频谱,避免为提高时频分辨率频繁切换窗口参数,降低算法复杂度。以增强信号能量集中度为参数调优目标选取窗口参数,确保对各类扰动的精确时频定位。采用自动阈值法确定实际扰动信号的主频点,并对主频点进行时频变换,进一步提高算法执行效率。仿真和实测结果表明,相比于现有复合电能质量扰动检测算法,该检测方法实时性好、时频分辨能力强、计算复杂度低,适用于复杂电能质量扰动实时准确检测。展开更多
基金supported by the National Natural Science Foundation of China (42274144,42304122,and 41974155)the Key Research and Development Program of Shaanxi (2023-YBGY-076)+1 种基金the National Key R&D Program of China (2020YFA0713404)the China Uranium Industry and East China University of Technology Joint Innovation Fund (NRE202107)。
文摘Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods.
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
基金supported by the National Science and Technology Major Project of China(Grant No.2011ZX05014 and 2011ZX05008-005)
文摘The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.
基金supported by Scientific Research Fund of Sichuan Provincial Education Departmentthe National Nature Science Foundation of China (No. 40873035)
文摘The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.
基金This research is supported by the National Science and Technology Major Project of China(No.2011ZX05024-001-03)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588)Innovation Fund for graduate students of Xi’an Shiyou University(No.YCS17111017).
文摘The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.
基金supported by the National Natural Science Foundation of China(6110216461272224)the Scientific Research Fund of Hangzhou Normal University(2011QDL021)
文摘This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value according to the characteristics of the signal samples.Signals in various impulsive noise models are considered to illustrate that the robust S transform can achieve better performance than the standard S transform.Moreover,mean square errors for instantaneous frequency estimation of the robust S transform are compared with that of the standard S transform,showing that the robust S transform can achieve significantly improved instantaneous frequency estimation for the signals in impulsive noise.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/111/46.
文摘An implicit finite difference(FD)and artificial neural network(ANN)tech-niques are applied to study the triple diffusion and non-linear mixed convection flow around a vertical cone.The forced flow is due to an impulsive motion of a micropolar nanofluid while the buoyancy-driven flow is obtained using the quadratic form of Boussinesq approx-imation.Two governing equations are introduced for the species concentrations;those include non-linear chemical reactions.It is focused on the cases of the weak concentration of microelements,opposing and assisting flow,and the roles of the magnetic field,viscous dissipation,and convective boundary conditions are examined.The solution methodology is based on Mangler’s transformations.At the same time,the effective ANN is used to predict some important physical quantities such as heat transfer rate against some key factors such as Biot number,Eckert number,and magnetic coefficient.Remarkably,the flow rate in the assisting flow is up to 0.95%higher than in the opposing flow.Across all cases,an increase in the vortex parameter(K Z 0:1-1:2)enhances fluid friction near the cone surface by 63.1%.These findings are particularly relevant for industrial applications involving heat and mass transfer in nanofluid systems,such as microreactors,biomedical engineering,and thermal energy storage.
基金supported by the National Natural Science Foundation of China (NSFC) (No.41830318)the Joint Funds of the NSFC-DFG (No.51861135305)。
文摘Arsenic(As)speciation transformation in acid mine drainage(AMD)is comprehensively affected by biological and abiotic factors,such as microbially mediated Fe/S redox reactions and changes in environmental conditions(pH and oxidation-reduction potential).However,their combined impacts on arsenic speciation transformation remain poorly studied.Therefore,we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions.The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture,pH 2.0,2.5,and 3.0 are more conducive to the formation of jarosites and ferric arsenate,which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation.The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure,further infuencing the biodissolution of pyrite and the release and oxidation process of Fe/S.The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe,S,and As in solution is mainly regulated by pH and potential values,which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization.The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation,and this correlation is critically regulated by the pH conditions of the system.
文摘针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗函数有效窗长及频谱,避免为提高时频分辨率频繁切换窗口参数,降低算法复杂度。以增强信号能量集中度为参数调优目标选取窗口参数,确保对各类扰动的精确时频定位。采用自动阈值法确定实际扰动信号的主频点,并对主频点进行时频变换,进一步提高算法执行效率。仿真和实测结果表明,相比于现有复合电能质量扰动检测算法,该检测方法实时性好、时频分辨能力强、计算复杂度低,适用于复杂电能质量扰动实时准确检测。