针对近连续流过渡区多尺度绕流问题,学界发展了N-S(Navier-Stokes)/DSMC(direct simulation Monte Carlo)耦合方法,大多数此类求解器面临着耦合界面波动失稳的难题,因此对复杂外形和耦合界面的通用性值得重点研究。鉴于非结构网格面向...针对近连续流过渡区多尺度绕流问题,学界发展了N-S(Navier-Stokes)/DSMC(direct simulation Monte Carlo)耦合方法,大多数此类求解器面临着耦合界面波动失稳的难题,因此对复杂外形和耦合界面的通用性值得重点研究。鉴于非结构网格面向复杂外形高度的贴体性、优良适应性以及工程领域对过渡流区高效通用型计算方法的需求,提出并实现了一套三维复杂界面四面体非结构网格N-S/DSMC耦合方法用于模拟高超声速过渡流。该方法使用局部克努森数作为连续失效参数划分连续/稀薄区域,并生成三维复杂N-S/DSMC耦合界面,沿分界面两侧分别推进一层或多层界面信息传递单元,基于边界状态法进行信息耦合。该耦合方法无需对复杂不规则分界面作光滑和修型处理,具备对复杂过渡流区工程问题数值模拟的通用性。分别对三维高超声速圆球和钝锥绕流进行模拟,数值结果显示:与参考文献中的DSMC方法相比,激波处数值和壁面特征值基本一致,最大误差不超过8%,但计算效率分别提高了1.74倍和2.28倍,验证了该耦合方法的正确性和高效性。展开更多
An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adap...An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.展开更多
The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. T...The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.展开更多
A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-average...A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data.展开更多
A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for s...A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for solying the problem is developed . Numerical calculations are performed to confirm the reliability and effectiveness of the method.展开更多
This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining e...This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining experiments were carried out at the lathe using carbide cutting insert coated with TiC and two forms of cutting tools made of AISI 5140 steel. Three levels for spindle speed, depth of cut, feed rate and tool overhang were chosen as cutting variables. The Taguchi method L9 orthogonal array was applied to design of experiment. By the help of signal-to-noise ratio and analysis of variance, it was concluded that spindle speed has the significant effect on the surface roughness, while tool overhang is the dominant factor affecting natural frequency for both cutting tools. In addition, the optimum cutting conditions for surface roughness and natural frequency were found at different levels. Finally, confirmation experiments were conducted to verify the effectiveness and efficiency of the Taguchi method in optimizing the cutting parameters for surface roughness and natural frequency.展开更多
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
It is important to improve the speed of a ship,the friction resistance can be reduced by injection air at the bottom of a ship when the ship is running on the water.As the first part of the studying project,here numer...It is important to improve the speed of a ship,the friction resistance can be reduced by injection air at the bottom of a ship when the ship is running on the water.As the first part of the studying project,here numerical simulation study method,boundary condition and governing equations are presented.It is easy to study complicated problems from simple conditions,so the program concerning boundary layer condition is compiled to solve the problem.Here the spectral method is introduced,and the results are tested by Dorod’s results.展开更多
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split i...In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.展开更多
An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the in...An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the inlet boundary conditions according to the exact potential flow solution.Then the wave evolution is simulated by solving the unsteady incompressible Navier-Stokes(N-S)equations coupled with the volume of fluid method.For the small amplitude wave with reasonable wave parameters,the numerical wave result agrees well with that of the given wave model.Finally,a monopile support configuration is introduced and a CFD-based load calculation method is established to accurately calculate the unsteady load under the combined action of wave and wind.The computed unsteady wave load on a small-size monopile support located in the small amplitude wave flow coincides with that of the Morison formula.The load calculations are also performed on a large-size monopile support and a monopile-supported offshore wind turbine under the combined action of small amplitude wave and wind.展开更多
基于N-S(Navier-Stokes)方程,进行了航行船舶辐射问题的数值模拟,包括强制垂荡和强制纵摇的模拟,计算了船舶垂荡和纵摇的附加质量和阻尼。数值模拟中,控制方程—RANS(Reynolds Averaged Navier-Stokes)方程和连续性方程使用有限体积法离...基于N-S(Navier-Stokes)方程,进行了航行船舶辐射问题的数值模拟,包括强制垂荡和强制纵摇的模拟,计算了船舶垂荡和纵摇的附加质量和阻尼。数值模拟中,控制方程—RANS(Reynolds Averaged Navier-Stokes)方程和连续性方程使用有限体积法离散,非线性自由面采用VOF方法处理。文中给出了以不同航速前进的船舶强制垂荡和纵摇的力与力矩,以及船舶垂荡和纵摇的附加质量系数和阻尼系数,并与DUT(Delft University of Technology)的试验数据进行了比较,二者吻合良好。展开更多
文摘针对近连续流过渡区多尺度绕流问题,学界发展了N-S(Navier-Stokes)/DSMC(direct simulation Monte Carlo)耦合方法,大多数此类求解器面临着耦合界面波动失稳的难题,因此对复杂外形和耦合界面的通用性值得重点研究。鉴于非结构网格面向复杂外形高度的贴体性、优良适应性以及工程领域对过渡流区高效通用型计算方法的需求,提出并实现了一套三维复杂界面四面体非结构网格N-S/DSMC耦合方法用于模拟高超声速过渡流。该方法使用局部克努森数作为连续失效参数划分连续/稀薄区域,并生成三维复杂N-S/DSMC耦合界面,沿分界面两侧分别推进一层或多层界面信息传递单元,基于边界状态法进行信息耦合。该耦合方法无需对复杂不规则分界面作光滑和修型处理,具备对复杂过渡流区工程问题数值模拟的通用性。分别对三维高超声速圆球和钝锥绕流进行模拟,数值结果显示:与参考文献中的DSMC方法相比,激波处数值和壁面特征值基本一致,最大误差不超过8%,但计算效率分别提高了1.74倍和2.28倍,验证了该耦合方法的正确性和高效性。
基金supported by the National Natural Science Foundation of China(11272152)
文摘An h-adaptive method is developed for high-order discontinuous Galerkin methods(DGM)to solve the laminar compressible Navier-Stokes(N-S)equations on unstructured mesh.The vorticity is regarded as the indicator of adaptivity.The elements where the vorticity is larger than a pre-defined upper limit are refined,and those where the vorticity is smaller than a pre-defined lower limit are coarsened if they have been refined.A high-order geometric approximation of curved boundaries is adopted to ensure the accuracy.Numerical results indicate that highly accurate numerical results can be obtained with the adaptive method at relatively low expense.
文摘The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.
文摘A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data.
文摘A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for solying the problem is developed . Numerical calculations are performed to confirm the reliability and effectiveness of the method.
文摘This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining experiments were carried out at the lathe using carbide cutting insert coated with TiC and two forms of cutting tools made of AISI 5140 steel. Three levels for spindle speed, depth of cut, feed rate and tool overhang were chosen as cutting variables. The Taguchi method L9 orthogonal array was applied to design of experiment. By the help of signal-to-noise ratio and analysis of variance, it was concluded that spindle speed has the significant effect on the surface roughness, while tool overhang is the dominant factor affecting natural frequency for both cutting tools. In addition, the optimum cutting conditions for surface roughness and natural frequency were found at different levels. Finally, confirmation experiments were conducted to verify the effectiveness and efficiency of the Taguchi method in optimizing the cutting parameters for surface roughness and natural frequency.
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
文摘It is important to improve the speed of a ship,the friction resistance can be reduced by injection air at the bottom of a ship when the ship is running on the water.As the first part of the studying project,here numerical simulation study method,boundary condition and governing equations are presented.It is easy to study complicated problems from simple conditions,so the program concerning boundary layer condition is compiled to solve the problem.Here the spectral method is introduced,and the results are tested by Dorod’s results.
基金financially supported by the National Natural Science Foundation of China(Grant No.51349011)the Foundation of Si’chuan Educational Committee(Grant No.17ZB0452)+1 种基金the Innovation Team Project of Si’chuan Educational Committee(Grant No.18TD0019)the Longshan Academic Talent Research Support Program of the Southwest of Science and Technology(Grant Nos.18LZX715 and 18LZX410)
文摘In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.
基金supported partly by the National Basic Research Program of China("973"Program)(No.2014CB046200)the National Natural Science Foundation of China(No.11372135)the NUAA Fundamental Research Funds(No.NS2013005)
文摘An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the inlet boundary conditions according to the exact potential flow solution.Then the wave evolution is simulated by solving the unsteady incompressible Navier-Stokes(N-S)equations coupled with the volume of fluid method.For the small amplitude wave with reasonable wave parameters,the numerical wave result agrees well with that of the given wave model.Finally,a monopile support configuration is introduced and a CFD-based load calculation method is established to accurately calculate the unsteady load under the combined action of wave and wind.The computed unsteady wave load on a small-size monopile support located in the small amplitude wave flow coincides with that of the Morison formula.The load calculations are also performed on a large-size monopile support and a monopile-supported offshore wind turbine under the combined action of small amplitude wave and wind.
文摘基于N-S(Navier-Stokes)方程,进行了航行船舶辐射问题的数值模拟,包括强制垂荡和强制纵摇的模拟,计算了船舶垂荡和纵摇的附加质量和阻尼。数值模拟中,控制方程—RANS(Reynolds Averaged Navier-Stokes)方程和连续性方程使用有限体积法离散,非线性自由面采用VOF方法处理。文中给出了以不同航速前进的船舶强制垂荡和纵摇的力与力矩,以及船舶垂荡和纵摇的附加质量系数和阻尼系数,并与DUT(Delft University of Technology)的试验数据进行了比较,二者吻合良好。