This study investigates the return dynamics,volatility structure,and risk characteristics of five representative S&P 500 stocks:Johnson&Johnson,Microsoft,NVIDIA,Coca-Cola,and Home Depot,using ARMA-GARCH models...This study investigates the return dynamics,volatility structure,and risk characteristics of five representative S&P 500 stocks:Johnson&Johnson,Microsoft,NVIDIA,Coca-Cola,and Home Depot,using ARMA-GARCH models.Descriptive statistics and diagnostic tests confirm non-normality,negative skewness,fat tails,and volatility clustering,providing strong justification for conditional mean-variance modelling.Optimal model specifications are selected via the Bayesian Information Criterion,with EGARCH frameworks generally outperforming alternative GARCH variants in capturing asymmetric volatility responses.Rolling-window forecasts for 2024Q1 show that the models generate stable and reliable volatility predictions for low-volatility stocks(JNJ,KO),while performance is weaker for highly volatile stocks(NVDA),highlighting structural limitations under extreme market shifts.To evaluate risk management implications,one percent Value-at-Risk and expected shortfall were computed and backtested.Results indicated conservative tail-risk forecasts,with violation rates well within acceptable thresholds.Portfolio applications are further explored by constructing the Global Minimum Variance Portfolio(GMVP)and the Maximum Sharpe Ratio(Max SR)portfolio using rolling covariance estimates.Out-of-sample backtesting demonstrated that the GMVP delivered low volatility but modest returns,whereas the Max SR portfolio achieved significantly higher performance,consistent with the risk-return trade-off.Overall,the findings confirm that ARMA-GARCH models are effective tools for modelling conditional volatility and informing dynamic asset allocation.However,their limited adaptability to jump risk and nonlinear structural breaks underscores the need for more advanced modelling approaches in high-volatility environments.展开更多
This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange.To achieve the objectives,the study uses descriptive statistics;tests including var...This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange.To achieve the objectives,the study uses descriptive statistics;tests including variance ratio,Augmented Dickey-Fuller,Phillips-Perron,and Kwiatkowski Phillips Schmidt and Shin;and Autoregressive Integrated Moving Average(ARIMA).The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series,using the ARIMA model.The results reveal that the mean returns of both indices are positive but near zero.This is indicative of a regressive tendency in the longterm.The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values,with few deviations.Hence,the ARIMA model is capable of predicting medium-or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.展开更多
Forecasting the movement of stock market is a long-time attractive topic. This paper implements different statistical learning models to predict the movement of S&P 500 index. The S&P 500 index is influenced b...Forecasting the movement of stock market is a long-time attractive topic. This paper implements different statistical learning models to predict the movement of S&P 500 index. The S&P 500 index is influenced by other important financial indexes across the world such as commodity price and financial technical indicators. This paper systematically investigated four supervised learning models, including Logistic Regression, Gaussian Discriminant Analysis (GDA), Naive Bayes and Support Vector Machine (SVM) in the forecast of S&P 500 index. After several experiments of optimization in features and models, especially the SVM kernel selection and feature selection for different models, this paper concludes that a SVM model with a Radial Basis Function (RBF) kernel can achieve an accuracy rate of 62.51% for the future market trend of the S&P 500 index.展开更多
文摘This study investigates the return dynamics,volatility structure,and risk characteristics of five representative S&P 500 stocks:Johnson&Johnson,Microsoft,NVIDIA,Coca-Cola,and Home Depot,using ARMA-GARCH models.Descriptive statistics and diagnostic tests confirm non-normality,negative skewness,fat tails,and volatility clustering,providing strong justification for conditional mean-variance modelling.Optimal model specifications are selected via the Bayesian Information Criterion,with EGARCH frameworks generally outperforming alternative GARCH variants in capturing asymmetric volatility responses.Rolling-window forecasts for 2024Q1 show that the models generate stable and reliable volatility predictions for low-volatility stocks(JNJ,KO),while performance is weaker for highly volatile stocks(NVDA),highlighting structural limitations under extreme market shifts.To evaluate risk management implications,one percent Value-at-Risk and expected shortfall were computed and backtested.Results indicated conservative tail-risk forecasts,with violation rates well within acceptable thresholds.Portfolio applications are further explored by constructing the Global Minimum Variance Portfolio(GMVP)and the Maximum Sharpe Ratio(Max SR)portfolio using rolling covariance estimates.Out-of-sample backtesting demonstrated that the GMVP delivered low volatility but modest returns,whereas the Max SR portfolio achieved significantly higher performance,consistent with the risk-return trade-off.Overall,the findings confirm that ARMA-GARCH models are effective tools for modelling conditional volatility and informing dynamic asset allocation.However,their limited adaptability to jump risk and nonlinear structural breaks underscores the need for more advanced modelling approaches in high-volatility environments.
文摘This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange.To achieve the objectives,the study uses descriptive statistics;tests including variance ratio,Augmented Dickey-Fuller,Phillips-Perron,and Kwiatkowski Phillips Schmidt and Shin;and Autoregressive Integrated Moving Average(ARIMA).The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series,using the ARIMA model.The results reveal that the mean returns of both indices are positive but near zero.This is indicative of a regressive tendency in the longterm.The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values,with few deviations.Hence,the ARIMA model is capable of predicting medium-or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.
文摘Forecasting the movement of stock market is a long-time attractive topic. This paper implements different statistical learning models to predict the movement of S&P 500 index. The S&P 500 index is influenced by other important financial indexes across the world such as commodity price and financial technical indicators. This paper systematically investigated four supervised learning models, including Logistic Regression, Gaussian Discriminant Analysis (GDA), Naive Bayes and Support Vector Machine (SVM) in the forecast of S&P 500 index. After several experiments of optimization in features and models, especially the SVM kernel selection and feature selection for different models, this paper concludes that a SVM model with a Radial Basis Function (RBF) kernel can achieve an accuracy rate of 62.51% for the future market trend of the S&P 500 index.