Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catal...Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catalyst(Ru/RuS_(2)@N-rGO)with low crystallinity was fabricated by a simple and low-temperature method for HER in alkaline solution,applying the Na_(2)SO_(4)as S source and polypyrrole as N source.Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS_(2),the Ru/RuS_(2)@N-rGO heterocatalyst at the calcining 500°C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm^(2)and remarkable stability for 24 h in 1.0 mol/L KOH.This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.展开更多
The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um...The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.展开更多
The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particl...The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect.展开更多
Alkaline hydrogen evolution reaction (HER) suffers from a sluggish kinetic,which requires the elaborate catalytic interface and micro-nanoscale architecture engineering of the electrocatalysts to accelerate the water ...Alkaline hydrogen evolution reaction (HER) suffers from a sluggish kinetic,which requires the elaborate catalytic interface and micro-nanoscale architecture engineering of the electrocatalysts to accelerate the water dissociation and hydrogen evolution.Herein,the heterointerface engineering was proposed for promoting the alkaline HER by constructing the highly exposed Ru/RuS_(2) heterostructures homogeneously distributed on hollow N/S-doped carbon microspheres (Ru/RuS_(2)@h-NSC).Benefited from the synergistic effect of heterointerfacial Ru/RuS_(2),the high accessibility of the active sites on both inner and outer surface of mesoporous shells and the efficient mass transport,Ru/RuS_(2)@h-NSC affords a remarkable catalytic performance with an overpotential of 26 mV@10 mA/cm^(2) for alkaline HER,outperforming most of the state-of-the-art catalysts.Further applying Ru/RuS_(2)@h-NSC and its oxidized derivate for the overall alkaline water splitting,the required cell voltage is much lower than that of the commercial Pt/C||RuO_(2)pair to achieve the same current density.Our study may allow us to guide the design of micro-nanoreactors with optimal catalytic interfaces for promising electrocatalytic applications.展开更多
基金supported by National Natural Science Foundation of China(Nos.21773184 and 21671158)Key Science and Technology Project of Henan(No.202102210238)+1 种基金Natural Science Foundation of Henan(No.212300410339)Cultivation Program for Young Backbone Teachers in Henan University of Technology(Nos.21420108 and 21420073).
文摘Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catalyst(Ru/RuS_(2)@N-rGO)with low crystallinity was fabricated by a simple and low-temperature method for HER in alkaline solution,applying the Na_(2)SO_(4)as S source and polypyrrole as N source.Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS_(2),the Ru/RuS_(2)@N-rGO heterocatalyst at the calcining 500°C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm^(2)and remarkable stability for 24 h in 1.0 mol/L KOH.This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.
文摘The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.
文摘The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect.
基金financially supported by the National Key R&D Program of China (No. 2021YFA1500402)the National Natural Science Foundation of China (NSFC, Nos. 21901246, 22105203 and 22175174)the Natural Science Foundation of Fujian Province (Nos. 2020J01116 and 2021J06033)。
文摘Alkaline hydrogen evolution reaction (HER) suffers from a sluggish kinetic,which requires the elaborate catalytic interface and micro-nanoscale architecture engineering of the electrocatalysts to accelerate the water dissociation and hydrogen evolution.Herein,the heterointerface engineering was proposed for promoting the alkaline HER by constructing the highly exposed Ru/RuS_(2) heterostructures homogeneously distributed on hollow N/S-doped carbon microspheres (Ru/RuS_(2)@h-NSC).Benefited from the synergistic effect of heterointerfacial Ru/RuS_(2),the high accessibility of the active sites on both inner and outer surface of mesoporous shells and the efficient mass transport,Ru/RuS_(2)@h-NSC affords a remarkable catalytic performance with an overpotential of 26 mV@10 mA/cm^(2) for alkaline HER,outperforming most of the state-of-the-art catalysts.Further applying Ru/RuS_(2)@h-NSC and its oxidized derivate for the overall alkaline water splitting,the required cell voltage is much lower than that of the commercial Pt/C||RuO_(2)pair to achieve the same current density.Our study may allow us to guide the design of micro-nanoreactors with optimal catalytic interfaces for promising electrocatalytic applications.