This paper presents a comprehensive review of previous research based on scientific papers,technical reports,and published academic theses.The review focuses on studies and investigations concerning the application of...This paper presents a comprehensive review of previous research based on scientific papers,technical reports,and published academic theses.The review focuses on studies and investigations concerning the application of rubberbased biopolymers as modifiers in asphalt binders and mixtures,alongside relevant existing literature,encompassing their influence on asphalt binders and mixtures as well as their binder-aggregate interface performance.Incorporating rubber-based biopolymers into base asphalt significantly enhances the viscosity,complex modulus,rutting parameters,and recovery percentage while reducing non-recoverable compliance and phase angle.These alterations indicate that rubber-based biopolymer-modified asphalt displays superior resistance to permanent deformation,surpassing base asphalt's linear and non-linear rheological properties.Besides,rubber-based biopolymers alter the functional groups within the base asphalt due to the interaction in the asphalt matrix,especially afterthe aging process.These biopolymers are uniformly dispersed throughoutthe asphalt matrix,facilitated by the interconnected elastic networks among the biopolymer molecules.This improves the rheological and mechanical properties of both asphalt binders and mixtures.It is recommended that further studies investigate the combined effects of rubber-based biopolymers with other materials commonly used in asphalt modifications,such as nanomaterials and biomaterials,on the non-linear rheological and microstructural properties of asphalt binders,as well asthe performance of asphalt mixtures.Advanced simulation and modeling techniques,such as molecular dynamic simulation and machine learning should be employed to understand the behavior of rubber-based biopolymermodified asphalt binders and mixtures in various aging and loading situations.展开更多
基金the Ministry of Higher Education Malaysia for providing the Fundamental Research Grant Scheme with Project Code FRGS/1/2021/TK01/USM/02/1,which facilitated the execution of this researchThe authors also appreciate the support from Universiti Sains Malaysia through the Research University Individual(RUI)Grant(1001.PAWAM.8014140).
文摘This paper presents a comprehensive review of previous research based on scientific papers,technical reports,and published academic theses.The review focuses on studies and investigations concerning the application of rubberbased biopolymers as modifiers in asphalt binders and mixtures,alongside relevant existing literature,encompassing their influence on asphalt binders and mixtures as well as their binder-aggregate interface performance.Incorporating rubber-based biopolymers into base asphalt significantly enhances the viscosity,complex modulus,rutting parameters,and recovery percentage while reducing non-recoverable compliance and phase angle.These alterations indicate that rubber-based biopolymer-modified asphalt displays superior resistance to permanent deformation,surpassing base asphalt's linear and non-linear rheological properties.Besides,rubber-based biopolymers alter the functional groups within the base asphalt due to the interaction in the asphalt matrix,especially afterthe aging process.These biopolymers are uniformly dispersed throughoutthe asphalt matrix,facilitated by the interconnected elastic networks among the biopolymer molecules.This improves the rheological and mechanical properties of both asphalt binders and mixtures.It is recommended that further studies investigate the combined effects of rubber-based biopolymers with other materials commonly used in asphalt modifications,such as nanomaterials and biomaterials,on the non-linear rheological and microstructural properties of asphalt binders,as well asthe performance of asphalt mixtures.Advanced simulation and modeling techniques,such as molecular dynamic simulation and machine learning should be employed to understand the behavior of rubber-based biopolymermodified asphalt binders and mixtures in various aging and loading situations.