An innovative photoelectrode, TiO_2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H_2SO_4 was used as electrolytic solution, the current had been constantly 1A from the beginning of the oxi...An innovative photoelectrode, TiO_2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H_2SO_4 was used as electrolytic solution, the current had been constantly 1A from the beginning of the oxidation until reaching a designed voltage. Results showed that the photocatalytic activity of electrode was better when the designed voltage was 160 V. The morphology and the crystalline texture of the TiO_2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rhodamine B in photocatalytic (PC) and photoelectrocatalytic (PEC) reaction was investigated.展开更多
Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and ...Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 oC is able to eliminate mixed surfac-tant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.展开更多
Solar-driven photoelectrochemical(PEC)water splitting systems are highly promising for converting solar energy into clean and sustainable chemical energy.In such PEC systems,an integrated photoelectrode incorporates a...Solar-driven photoelectrochemical(PEC)water splitting systems are highly promising for converting solar energy into clean and sustainable chemical energy.In such PEC systems,an integrated photoelectrode incorporates a light harvester for absorbing solar energy,an interlayer for transporting photogenerated charge carriers,and a co-catalyst for triggering redox reactions.Thus,understanding the correlations between the intrinsic structural properties and functions of the photoelectrodes is crucial.Here we critically examine various 2D layered photoanodes/photocathodes,including graphitic carbon nitrides,transition metal dichalcogenides,layered double hydroxides,layered bismuth oxyhalide nanosheets,and MXenes,combined with advanced nanocarbons(carbon dots,carbon nanotubes,graphene,and graphdiyne)as co-catalysts to assemble integrated photoelectrodes for oxygen evolution/hydrogen evolution reactions.The fundamental principles of PEC water splitting and physicochemical properties of photoelectrodes and the associated catalytic reactions are analyzed.Elaborate strategies for the assembly of 2D photoelectrodes with nanocarbons to enhance the PEC performances are introduced.The mechanisms of interplay of 2D photoelectrodes and nanocarbon co-catalysts are further discussed.The challenges and opportunities in the field are identified to guide future research for maximizing the conversion efficiency of PEC water splitting.展开更多
The preparation and study of supported TiO2 for photocatalytic application in solar cell devices is a relevant research field. Thin films of TiO2 prepared on Ti by thermal oxidation in a wide range of temperatures (45...The preparation and study of supported TiO2 for photocatalytic application in solar cell devices is a relevant research field. Thin films of TiO2 prepared on Ti by thermal oxidation in a wide range of temperatures (450°C - 900°C) were characterized by electrochemical impedance spectroscopy, potentiometry and amperometry. This material presents photoelectrochemical activity, which depends dramatically of the oxidation temperature and the exposition time at the studied temperatures. The flatband potential as well as the donor density and the resistance to the charge transfer were measured. All these parameters are temperature dependent, and the optimal values are observed on the photoelectrodes prepared at 750°C. This result is consistent with the photochemical response reported in the literature for thin films of Ti/TiO2 prepared under similar conditions.展开更多
In this study,sulfur-doped TiO2 /Ti photoelectrodes were prepared by anodization. The morphology, crystalline structure,composition of sulfur-doped TiO2 /Ti film and light absorption property were examined by SEM,XRD,...In this study,sulfur-doped TiO2 /Ti photoelectrodes were prepared by anodization. The morphology, crystalline structure,composition of sulfur-doped TiO2 /Ti film and light absorption property were examined by SEM,XRD,XRF,XPS and UV/VIS respectively. Dimethyl phthalate( DMP) ,one kind of environmental disrupting chemicals( EDCs) ,was degraded by the optimized photoelectrodes. Power of xenon light,initial concentration of DMP,photoelectrocatalytic( PEC) area of photoelectrode and bias were investigated in the study on kinetics of PEC degradation of DMP. Hence,this study concluded that the optimum conditions were power of xenon light 150 W,initial concentration of DMP 1 mg/L,PEC area of sulfur-doped TiO2 /Ti photoelectrode 10 cm2,bias 1. 3 V in the PEC reaction system.展开更多
CdS quantum dots sensitized platelike WO_3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition(CBD) technique.To further improve the stability of the p...CdS quantum dots sensitized platelike WO_3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition(CBD) technique.To further improve the stability of the photoelectrodes in alkaline environment,the platelike WO_3 films were treated with TiCl_4 to form a nano-TiO_2 buffer layer on the WO_3 plate surface before loading CdSQDs.The resulting electrodes were characterized by using XRD,SEM,HR-TEM and UV-vis spectrum.The photocatalytic activity of the resulting electrodes was investigated by degradation of methyl orange(MO) in aqueous solution.The photoelectrochemical(PEC) property of the resulting electrodes was also characterized by the linear sweep voltammetry.The results of both the degradation of MO and photocurrent tests indicated that the as-prepared CdSQDs sensitized WO_3 platelike photoelectrodes exhibit a significant improvement in photocatalytic degradation and PEC activity under visible light irradiation,compared with unsupported CdSQDs electrodes.Significantly,coating the WO_3 plates with nano-TiO_2 obviously facilitate the charge separation and retards the charge-pair recombination,and results in a highest activity for QDsCdS/TiO_2/WO_3 photoelectrodes.展开更多
Nanostructured TiO 2 porous film supported on nickel was prepared through sol-gel process,and was used as photoelectrode in solar energy photoelectrochemical cell.It was found that short circuit photocurrent and open ...Nanostructured TiO 2 porous film supported on nickel was prepared through sol-gel process,and was used as photoelectrode in solar energy photoelectrochemical cell.It was found that short circuit photocurrent and open circuit photovoltage of the photoelectrodes increased with the increment of sintering temperature and thickness of TiO 2 film.Through STM,the pore quantity and diameter of nanostructured TiO 2 film were found to increase with the increment of sintering temperature.It was found that the transparence of different thickness nanostructured TiO 2 films coated on quartz did not change much.展开更多
Photo-assisted capacitors are attractive devices for solar energy conversion and storage,while the behavior of photoelectrodes limits their performance.In this work,MoS_(2)photoelectrodes were modified by g-C_(3)N_(4)...Photo-assisted capacitors are attractive devices for solar energy conversion and storage,while the behavior of photoelectrodes limits their performance.In this work,MoS_(2)photoelectrodes were modified by g-C_(3)N_(4),exhibiting enhanced photo-rechargeable properties.Our results show that the introduction of g-C_(3)N_(4)increases the surface area of MoS_(2)photoelectrodes and promotes the transport of charge carriers,which can boost the specific capacity and cycle stability of capacitors.The as-prepared zinc-ion capacitors with g-C_(3)N_(4)/MoS_(2)photoelectrodes show a specific capacity of 380.93 F/g at 1 A/g under AM 1.5 G illumination.Remarkably,after 3000 cycles at 10 A/g,the capacity of the photo-assisted zinc-ion capacitor retains above 99%.展开更多
The performance of dye-sensitized solar cells(DSSCs) consisting of anatase TiO_2 nanoparticles that were synthesized via a hydrothermal method was studied.The synthesized TiO_2 nanoparticles were characterized by X-...The performance of dye-sensitized solar cells(DSSCs) consisting of anatase TiO_2 nanoparticles that were synthesized via a hydrothermal method was studied.The synthesized TiO_2 nanoparticles were characterized by X-ray diffraction(XRD),nitrogen sorption analysis,scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM),and UV-vis spectroscopy.Then the J-Vcurve,electrochemical impedance spectroscopy(EIS),and open-circuit voltage decay(OCVD) measurement were applied to evaluate the photovoltaic performance of DSSCs.Compared with the commercial TiO_2nanoparticles(P25),the synthesized-TiO_2 nanoparticles showed better performance.By adding diethylene glycol(DEG) before the hydrothermal process,the synthesized TiO_2 nanoparticles(hereafter referred to as TiO_2-DEG particles) shows narrower size distribution,larger specific surface area,higher crystallinity,and less surface defects than TiO_2(DEG free) particles.The analysis of photovoltaic properties of DSSCs based on TiO_2-DEG particles showed that the recombination of electron-hole pairs was decreased and the trapping of carries in grain boundaries restrained.It was believed that the photoelectrode fabricated with the as-prepared TiO_2 nanoparticles improved the loading amount of dye sensitizers(N719).and enhanced the photocurrent of the DSSCs.As a result,the TiO_2-DEG particle based cells achieved a photo-to-electricity conversion efficiency(η) of 7.90%,which is higher than 7.53%for the cell based on TiO2(DEG free) and 6.59%for the one fabricated with P25.展开更多
The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calcination process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The anatase-rutile TiO2 was mainly o...The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calcination process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The anatase-rutile TiO2 was mainly on the prepared TiO2-NiO composite surface electrode. In addition to NiO, the composite also formed NiTiO3 that increased with increasing calcination temperature. Photoelectrocatalytic degradation of Rhodamine B (RB) using this electrode was investigated, and anodic potential and pH were optimized. RB degradation was investigated under different conditions, and it showed that photoelectrocatalytic degradation could achieve efficient and complete mineralization of organic pollutant. Through comparison of the photoelectrocatalytic oxidation using the Ti/TiO2-NiO electrode operated by single photoanode with the Ti/TiO2-NiO electrode operated by several photoanode, it was found that the photoelectrocatalytic efficiency of that by series photoanodes was higher. Additionally, photoelectrocatalytic system was performed at the several different photoelectrodes, which verified the higher photocatalytic activity compared with the single photoelectrode.展开更多
This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization ...This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. This method does not seem to cause any influence on the nanotube structure, showing final products with news and interesting features with respect to the unmodified sample. Together with a decrease in the band gap and flat band potential of the TiO2 nanotubes, the tantalum doped specimen reports an increase of the photo conversion efficiency under UV light.展开更多
This review shows the importance of WO_(3)photoanode as a potentially low-cost,efficient,stable,and photoactive material for light-driven water splitting.For such,this manuscript aims to review the most recent publica...This review shows the importance of WO_(3)photoanode as a potentially low-cost,efficient,stable,and photoactive material for light-driven water splitting.For such,this manuscript aims to review the most recent publications regarding the strategies to improve the phoelectroactivity of WO_(3)films for water oxidation.In addition,this review aims to graphically highlight and discuss the general trendings of the photocurrent density response and stability test of the recent outstanding studies in the literature for photoelectrochemical water splitting application.The strategies covered in this review will not only concern the WO_(3)morphology and crystal plane growth,but also the many arrangements possibilities to improve the WO_(3)efficiency for water photoelectrooxidation,such as defect engineering based on oxygen vacancies,doping,decorations,and homo and heterojunctions.All these strategies are compared by the photocurrent density results and by the stability of these photocatalysts.The best results in this sense were observed in cases where the use of heterojunction was applied together with a desired morphology and crystal plane of the WO_(3)photoanode.However,the modifications that caused a decrease in the photocurrent density reaching values that are even lower than the pure WO_(3)were also discussed.In this way,this review intends to improve the knowledge about the synthesis and design of WO_(3)photoanodes to further obtain an efficient photocatalyst to minimize the recombination losses or losses across the interfaces and improve the photoelectroactivity for water splitting in the large-scale application.展开更多
Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage.Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias...Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage.Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias potential is applied to a photoelectrode,and thus the photoelectrocatalytic performance is closely related to the photoelectrode prepared by semiconductors.Among various semiconductors,metal-organic frameworks(MOFs)have attracted more and more attention because of their unique properties such as optical properties and adjustable structure.Herein,a comprehensive review on different MOFs(Ti-based,Zn-based,Co-based,Fe-based,Cu-based,and mixed metal-based MOFs)for heterogeneous photoelectrocatalysis is carried out and,in particular,the application of this technique for CO2 conversion and water splitting is discussed.In addition,the challenges and development prospects of MOFs in photoelectrocatalysis are also presented.展开更多
基金TheScientificResearchFoundationofHarbinInstituteofTechnology (No .HIT .2 0 0 1.5 6)
文摘An innovative photoelectrode, TiO_2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H_2SO_4 was used as electrolytic solution, the current had been constantly 1A from the beginning of the oxidation until reaching a designed voltage. Results showed that the photocatalytic activity of electrode was better when the designed voltage was 160 V. The morphology and the crystalline texture of the TiO_2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rhodamine B in photocatalytic (PC) and photoelectrocatalytic (PEC) reaction was investigated.
文摘Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 oC is able to eliminate mixed surfac-tant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.
基金the support from the National Natural Science Foundation of China(21878271,51702284,21878270,and 21961160742)the Zhejiang Provincial Natural Science Foundation of China(LR19B060002)+8 种基金the Fundamental Research Funds for the Central Universitiesthe Startup Foundation for Hundred-Talent Program of Zhejiang Universitythe Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)Key Laboratory of Marine Materials and Related Technologies,CASZhejiang Key Laboratory of Marine Materials and Protective Technologies(2020K10)the support of the NSFC 21501138the Natural Science Foundation of Hubei Province(2019CFB556)Science Research Foundation of Wuhan Institute of Technology(K2019039)the Australian Research Council(ARC)and QUT Centre for Materials Science for partial support.
文摘Solar-driven photoelectrochemical(PEC)water splitting systems are highly promising for converting solar energy into clean and sustainable chemical energy.In such PEC systems,an integrated photoelectrode incorporates a light harvester for absorbing solar energy,an interlayer for transporting photogenerated charge carriers,and a co-catalyst for triggering redox reactions.Thus,understanding the correlations between the intrinsic structural properties and functions of the photoelectrodes is crucial.Here we critically examine various 2D layered photoanodes/photocathodes,including graphitic carbon nitrides,transition metal dichalcogenides,layered double hydroxides,layered bismuth oxyhalide nanosheets,and MXenes,combined with advanced nanocarbons(carbon dots,carbon nanotubes,graphene,and graphdiyne)as co-catalysts to assemble integrated photoelectrodes for oxygen evolution/hydrogen evolution reactions.The fundamental principles of PEC water splitting and physicochemical properties of photoelectrodes and the associated catalytic reactions are analyzed.Elaborate strategies for the assembly of 2D photoelectrodes with nanocarbons to enhance the PEC performances are introduced.The mechanisms of interplay of 2D photoelectrodes and nanocarbon co-catalysts are further discussed.The challenges and opportunities in the field are identified to guide future research for maximizing the conversion efficiency of PEC water splitting.
文摘The preparation and study of supported TiO2 for photocatalytic application in solar cell devices is a relevant research field. Thin films of TiO2 prepared on Ti by thermal oxidation in a wide range of temperatures (450°C - 900°C) were characterized by electrochemical impedance spectroscopy, potentiometry and amperometry. This material presents photoelectrochemical activity, which depends dramatically of the oxidation temperature and the exposition time at the studied temperatures. The flatband potential as well as the donor density and the resistance to the charge transfer were measured. All these parameters are temperature dependent, and the optimal values are observed on the photoelectrodes prepared at 750°C. This result is consistent with the photochemical response reported in the literature for thin films of Ti/TiO2 prepared under similar conditions.
基金Sponsored by the National Natural Science Foundation of China ( Grant No 50678044)
文摘In this study,sulfur-doped TiO2 /Ti photoelectrodes were prepared by anodization. The morphology, crystalline structure,composition of sulfur-doped TiO2 /Ti film and light absorption property were examined by SEM,XRD,XRF,XPS and UV/VIS respectively. Dimethyl phthalate( DMP) ,one kind of environmental disrupting chemicals( EDCs) ,was degraded by the optimized photoelectrodes. Power of xenon light,initial concentration of DMP,photoelectrocatalytic( PEC) area of photoelectrode and bias were investigated in the study on kinetics of PEC degradation of DMP. Hence,this study concluded that the optimum conditions were power of xenon light 150 W,initial concentration of DMP 1 mg/L,PEC area of sulfur-doped TiO2 /Ti photoelectrode 10 cm2,bias 1. 3 V in the PEC reaction system.
基金Project(2014FJ3041)supported by the Research Funds of Science and Technology Agency of Hunan Provincial,ChinaProject(14A076)supported by the Research Funds of Education Agency of Hunan Provincial,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘CdS quantum dots sensitized platelike WO_3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition(CBD) technique.To further improve the stability of the photoelectrodes in alkaline environment,the platelike WO_3 films were treated with TiCl_4 to form a nano-TiO_2 buffer layer on the WO_3 plate surface before loading CdSQDs.The resulting electrodes were characterized by using XRD,SEM,HR-TEM and UV-vis spectrum.The photocatalytic activity of the resulting electrodes was investigated by degradation of methyl orange(MO) in aqueous solution.The photoelectrochemical(PEC) property of the resulting electrodes was also characterized by the linear sweep voltammetry.The results of both the degradation of MO and photocurrent tests indicated that the as-prepared CdSQDs sensitized WO_3 platelike photoelectrodes exhibit a significant improvement in photocatalytic degradation and PEC activity under visible light irradiation,compared with unsupported CdSQDs electrodes.Significantly,coating the WO_3 plates with nano-TiO_2 obviously facilitate the charge separation and retards the charge-pair recombination,and results in a highest activity for QDsCdS/TiO_2/WO_3 photoelectrodes.
文摘Nanostructured TiO 2 porous film supported on nickel was prepared through sol-gel process,and was used as photoelectrode in solar energy photoelectrochemical cell.It was found that short circuit photocurrent and open circuit photovoltage of the photoelectrodes increased with the increment of sintering temperature and thickness of TiO 2 film.Through STM,the pore quantity and diameter of nanostructured TiO 2 film were found to increase with the increment of sintering temperature.It was found that the transparence of different thickness nanostructured TiO 2 films coated on quartz did not change much.
基金upported partially by the National Natural Science Foundation of China(52302250 and 52272200)the Hebei Natural Science Foundation(B2024502013)+4 种基金the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(LAPS21004 and LAPS202114)the Beijing Natural Science Foundation(2222076)the 2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,the China Postdoctoral Science Foundation(2022M721129)the Fundamental Research Funds for the Central Universities(2022MS030 and 2021MS028)the NCEPU"Double First-Class"Program。
文摘Photo-assisted capacitors are attractive devices for solar energy conversion and storage,while the behavior of photoelectrodes limits their performance.In this work,MoS_(2)photoelectrodes were modified by g-C_(3)N_(4),exhibiting enhanced photo-rechargeable properties.Our results show that the introduction of g-C_(3)N_(4)increases the surface area of MoS_(2)photoelectrodes and promotes the transport of charge carriers,which can boost the specific capacity and cycle stability of capacitors.The as-prepared zinc-ion capacitors with g-C_(3)N_(4)/MoS_(2)photoelectrodes show a specific capacity of 380.93 F/g at 1 A/g under AM 1.5 G illumination.Remarkably,after 3000 cycles at 10 A/g,the capacity of the photo-assisted zinc-ion capacitor retains above 99%.
基金supported by National Natural Science Foundation of China(No.21476162)China International Science and Technology Project(Nos.2012DFG41980,S2016G3413)
文摘The performance of dye-sensitized solar cells(DSSCs) consisting of anatase TiO_2 nanoparticles that were synthesized via a hydrothermal method was studied.The synthesized TiO_2 nanoparticles were characterized by X-ray diffraction(XRD),nitrogen sorption analysis,scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM),and UV-vis spectroscopy.Then the J-Vcurve,electrochemical impedance spectroscopy(EIS),and open-circuit voltage decay(OCVD) measurement were applied to evaluate the photovoltaic performance of DSSCs.Compared with the commercial TiO_2nanoparticles(P25),the synthesized-TiO_2 nanoparticles showed better performance.By adding diethylene glycol(DEG) before the hydrothermal process,the synthesized TiO_2 nanoparticles(hereafter referred to as TiO_2-DEG particles) shows narrower size distribution,larger specific surface area,higher crystallinity,and less surface defects than TiO_2(DEG free) particles.The analysis of photovoltaic properties of DSSCs based on TiO_2-DEG particles showed that the recombination of electron-hole pairs was decreased and the trapping of carries in grain boundaries restrained.It was believed that the photoelectrode fabricated with the as-prepared TiO_2 nanoparticles improved the loading amount of dye sensitizers(N719).and enhanced the photocurrent of the DSSCs.As a result,the TiO_2-DEG particle based cells achieved a photo-to-electricity conversion efficiency(η) of 7.90%,which is higher than 7.53%for the cell based on TiO2(DEG free) and 6.59%for the one fabricated with P25.
文摘The method of Ti/TiO2-NiO photoelectrode prepared by using sol-gel method continued by calcination process was introduced. The prepared TiO2-NiO film was observed with XRD and TEM. The anatase-rutile TiO2 was mainly on the prepared TiO2-NiO composite surface electrode. In addition to NiO, the composite also formed NiTiO3 that increased with increasing calcination temperature. Photoelectrocatalytic degradation of Rhodamine B (RB) using this electrode was investigated, and anodic potential and pH were optimized. RB degradation was investigated under different conditions, and it showed that photoelectrocatalytic degradation could achieve efficient and complete mineralization of organic pollutant. Through comparison of the photoelectrocatalytic oxidation using the Ti/TiO2-NiO electrode operated by single photoanode with the Ti/TiO2-NiO electrode operated by several photoanode, it was found that the photoelectrocatalytic efficiency of that by series photoanodes was higher. Additionally, photoelectrocatalytic system was performed at the several different photoelectrodes, which verified the higher photocatalytic activity compared with the single photoelectrode.
文摘This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. This method does not seem to cause any influence on the nanotube structure, showing final products with news and interesting features with respect to the unmodified sample. Together with a decrease in the band gap and flat band potential of the TiO2 nanotubes, the tantalum doped specimen reports an increase of the photo conversion efficiency under UV light.
基金supported by the S?o Paulo Research Foundation(FAPESP)under the grant numbers#2017/21365-8(Costa,M.B.),#2016/12681-0(de Araújo,M.A.),#2019/22131-6(Tinoco,M.V.d.L.),#2018/02950-0(de Brito,J.F.),#2018/16401-8(Mascaro,L.H.),#2013/07296-2(FAPESP/CEPID),#2014/50249-8(FAPESP/GSK),and#2017/11986-5(FAPESP/SHELL)financed in part by the Coordena??o de Aperfei?oamento de Pessoal de Nível Superior–Brasil(CAPES)–Fincance Code 001。
文摘This review shows the importance of WO_(3)photoanode as a potentially low-cost,efficient,stable,and photoactive material for light-driven water splitting.For such,this manuscript aims to review the most recent publications regarding the strategies to improve the phoelectroactivity of WO_(3)films for water oxidation.In addition,this review aims to graphically highlight and discuss the general trendings of the photocurrent density response and stability test of the recent outstanding studies in the literature for photoelectrochemical water splitting application.The strategies covered in this review will not only concern the WO_(3)morphology and crystal plane growth,but also the many arrangements possibilities to improve the WO_(3)efficiency for water photoelectrooxidation,such as defect engineering based on oxygen vacancies,doping,decorations,and homo and heterojunctions.All these strategies are compared by the photocurrent density results and by the stability of these photocatalysts.The best results in this sense were observed in cases where the use of heterojunction was applied together with a desired morphology and crystal plane of the WO_(3)photoanode.However,the modifications that caused a decrease in the photocurrent density reaching values that are even lower than the pure WO_(3)were also discussed.In this way,this review intends to improve the knowledge about the synthesis and design of WO_(3)photoanodes to further obtain an efficient photocatalyst to minimize the recombination losses or losses across the interfaces and improve the photoelectroactivity for water splitting in the large-scale application.
基金the Natural Science Foundation of Jiangsu Province of China(Nos.BK20160430,BK20181070)the National Natural Science Foundation of China(No.51808250)+1 种基金the Project Funded by China Postdoctoral Science Foundation(Nos.2016M591757,2017M610336)the jiangsu Planned Projects for Postdoctoral Research Funds of China(No.1601179C)。
文摘Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage.Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias potential is applied to a photoelectrode,and thus the photoelectrocatalytic performance is closely related to the photoelectrode prepared by semiconductors.Among various semiconductors,metal-organic frameworks(MOFs)have attracted more and more attention because of their unique properties such as optical properties and adjustable structure.Herein,a comprehensive review on different MOFs(Ti-based,Zn-based,Co-based,Fe-based,Cu-based,and mixed metal-based MOFs)for heterogeneous photoelectrocatalysis is carried out and,in particular,the application of this technique for CO2 conversion and water splitting is discussed.In addition,the challenges and development prospects of MOFs in photoelectrocatalysis are also presented.