期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gradient-descent optimization of metasurfaces based on one deep-enhanced RseNet
1
作者 Yi Xu Fu Li +4 位作者 Jianqiang Gu Quan Xu Zhen Tian Jiaguang Han Weili Zhang 《Chinese Optics Letters》 2025年第8期164-169,共6页
Metasurfaces have revolutionized planar optics due to their prominent ability in light field manipulation.Recently,the incorporation of machine learning has further improved computational efficiency and reduced the re... Metasurfaces have revolutionized planar optics due to their prominent ability in light field manipulation.Recently,the incorporation of machine learning has further improved computational efficiency and reduced the reliance on professionals in designing various metasurfaces.However,the prevalent methods still suffer from configuration complexity and expensive training costs due to more than one model or a combination of rule-driven algorithms.This study proposes a deep learningbased paradigm using only one deep learning model for the end-to-end design of versatile metasurfaces.The adopted deepenhanced RseNet acts both as the surrogate of the electromagnetic simulator in forward spectrum prediction and as the path for backward gradient descent optimization of the meta-atom structures in the paralleled calculation.Without loss of generality,a polarization-multiplexing holographic and a polarization-independent vortex metasurface were designed by this paradigm and successfully demonstrated in the terahertz range.The extremely simplified framework presented here will not only propel the design and application of metasurfaces in terahertz communication and imaging fields,but its universality will also accelerate the research and development of subwavelength planar optics across various wavelengths through artificial intelligence[AI]-enhanced design for optical devices. 展开更多
关键词 metasurface deep learning TERAHERTZ gradient-descent optimization rsenet
原文传递
基于改进残差网络的马铃薯叶片病害识别
2
作者 李桂松 黎敬涛 +1 位作者 杨艳丽 刘霞 《湖南农业大学学报(自然科学版)》 CSCD 北大核心 2024年第6期123-128,共6页
针对计算机识别自然背景下马铃薯叶片病害准确率低的问题,提出一种C-ResNet-50模型以改善识别效果。首先,在田间采集马铃薯晚疫病、早疫病、炭疽病和健康叶片图像,并模拟拍摄角度、天气状况等影响因素对图像进行数据增强,从而构建试验... 针对计算机识别自然背景下马铃薯叶片病害准确率低的问题,提出一种C-ResNet-50模型以改善识别效果。首先,在田间采集马铃薯晚疫病、早疫病、炭疽病和健康叶片图像,并模拟拍摄角度、天气状况等影响因素对图像进行数据增强,从而构建试验数据集。其次,通过对比深度学习模型,选择并改进ResNet-50网络:通过向残差块中引入步长为1的3×3卷积层和1×1卷积层以解决残差块主干分支特征信息缺失严重的问题;通过设计新的全连接层以解决马铃薯叶片病害相似度高、分类难度大的问题;通过引入ECA注意力模块以解决主干网络定向关注能力不足的问题。结果表明:C-RseNet-50网络识别马铃薯叶片病害的平均准确率达90.83%,较原始模型的提升了1.84个百分点。 展开更多
关键词 马铃薯叶片病害 C-rsenet-50 ECA注意力模块 病害识别 残差块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部