Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to...As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to meet the real-time,high-reliability transmission requirements for the vast quantities of data generated in industrial environments.This paper proposes a holistic software-defined deterministic network(HSDDN)design solution.This solution uses a centralized controller to implement a comprehensive software definition,ranging from the network layer down to the physical layer.Within the wireless access domain,we decouple the standard radio-frequency modules from baseband processing to realize a software-defined physical layer,which then allows us to adjust the data transmission cycles and tag the trigger rates to meet demand for low-power,high-concurrency transmission.Within the wired network domain,we integrate software-defined networking with time-sensitive networking and propose a coordinated design strategy to address routing and the deterministic scheduling problem.We define a set of constraints to ensure collaborative transmission of the periodic and aperiodic data flows.To guarantee load balancing across all paths and timeslots,we introduce the Jain’s fairness index as the optimization objective and then construct a nondeterministic polynomial-time(NP)-hard joint optimization problem.Furthermore,an algorithm called Tabu search for routing and scheduling with dual-stages(TSRS-DS)is proposed.Simulation experiments demonstrate the effectiveness of the proposed HSDDN architecture.展开更多
The increasing popularity of e-commerce brings large volumes of sporadic orders from different customers,which have to be handled by freight trucks and distribution centers. To improve the level of service and reduce ...The increasing popularity of e-commerce brings large volumes of sporadic orders from different customers,which have to be handled by freight trucks and distribution centers. To improve the level of service and reduce the total shipping cost as well as traffic congestions in urban area, flexible methods and optimal vehicle routing strategies should be adopted to improve the efficiency of distribution effort. An optimization solution for vehicle routing and scheduling problem with time window for sporadic orders (VRPTW- S) was provided based on time-dependent travel time extracted from floating car data (FCD) with ArcGIS platform. A VRPTW-S model derived from the traditional vehicle routing problem was proposed, in which uncertainty of customer orders and travel time were considered. Based on this model, an advanced vehicle routing algorithm was designed to solve the problem. A case study of Shenzhen, Guangdong province, China, was conducted to demonstrate the vehicle operation flow,in which process of FCD and efficiency of delivery systems under different situations were discussed. The final results demonstrated a good performance of application of time-dependent travel time information using FCD in solving vehicle routing problems.展开更多
Postal departments are actively taking part in e commerce, of which logistics is a key joint. Computerized routing and scheduling of postal transportation operations offers significant potential for cost decreases an...Postal departments are actively taking part in e commerce, of which logistics is a key joint. Computerized routing and scheduling of postal transportation operations offers significant potential for cost decreases and productivity gains. Routing and scheduling hierarchy model is initially built and demonstrated in detail on the basis of statements of specific requirements of postal logistics in this paper, and the realized software is proved to be practical and reliable.展开更多
This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To ...This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To solve GMP,an iterative heuristic algorithm is designed.Instead of separately investigating each problem,this model simultaneously coordinates and optimizes the aircraft routing and scheduling.A simulation test is conducted on Nanjing Lukou International Airport(NKG)and the results show that the bilevel programming model can clearly outperform the widely used first-come-first-service(FCFS)scheduling scheme in terms of aircraft operational time under the precondition of none conflict.The research effort demonstrates that with the reduced operating cost and the improved overall efficiency,the proposed model can assist operations of the airports that are facing increasing traffic demand and working at almost maximum capacity.展开更多
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
基金This work was supported by the National Natural Science Foundation of China(92167205,92167205 and 62025305).
文摘As a result of the growing complexity of industrial Internet applications,traditional hardware-based network designs are encountering challenges in terms of programmability and dynamic adaptability as they struggle to meet the real-time,high-reliability transmission requirements for the vast quantities of data generated in industrial environments.This paper proposes a holistic software-defined deterministic network(HSDDN)design solution.This solution uses a centralized controller to implement a comprehensive software definition,ranging from the network layer down to the physical layer.Within the wireless access domain,we decouple the standard radio-frequency modules from baseband processing to realize a software-defined physical layer,which then allows us to adjust the data transmission cycles and tag the trigger rates to meet demand for low-power,high-concurrency transmission.Within the wired network domain,we integrate software-defined networking with time-sensitive networking and propose a coordinated design strategy to address routing and the deterministic scheduling problem.We define a set of constraints to ensure collaborative transmission of the periodic and aperiodic data flows.To guarantee load balancing across all paths and timeslots,we introduce the Jain’s fairness index as the optimization objective and then construct a nondeterministic polynomial-time(NP)-hard joint optimization problem.Furthermore,an algorithm called Tabu search for routing and scheduling with dual-stages(TSRS-DS)is proposed.Simulation experiments demonstrate the effectiveness of the proposed HSDDN architecture.
基金National Natural Science Foundation of China(No.71101109)Shanghai Pujiang Program,China(No.12PJ1404600)
文摘The increasing popularity of e-commerce brings large volumes of sporadic orders from different customers,which have to be handled by freight trucks and distribution centers. To improve the level of service and reduce the total shipping cost as well as traffic congestions in urban area, flexible methods and optimal vehicle routing strategies should be adopted to improve the efficiency of distribution effort. An optimization solution for vehicle routing and scheduling problem with time window for sporadic orders (VRPTW- S) was provided based on time-dependent travel time extracted from floating car data (FCD) with ArcGIS platform. A VRPTW-S model derived from the traditional vehicle routing problem was proposed, in which uncertainty of customer orders and travel time were considered. Based on this model, an advanced vehicle routing algorithm was designed to solve the problem. A case study of Shenzhen, Guangdong province, China, was conducted to demonstrate the vehicle operation flow,in which process of FCD and efficiency of delivery systems under different situations were discussed. The final results demonstrated a good performance of application of time-dependent travel time information using FCD in solving vehicle routing problems.
文摘Postal departments are actively taking part in e commerce, of which logistics is a key joint. Computerized routing and scheduling of postal transportation operations offers significant potential for cost decreases and productivity gains. Routing and scheduling hierarchy model is initially built and demonstrated in detail on the basis of statements of specific requirements of postal logistics in this paper, and the realized software is proved to be practical and reliable.
基金supported by the National Natural Science Foundations of China(Nos.U1933118,U2033205)。
文摘This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To solve GMP,an iterative heuristic algorithm is designed.Instead of separately investigating each problem,this model simultaneously coordinates and optimizes the aircraft routing and scheduling.A simulation test is conducted on Nanjing Lukou International Airport(NKG)and the results show that the bilevel programming model can clearly outperform the widely used first-come-first-service(FCFS)scheduling scheme in terms of aircraft operational time under the precondition of none conflict.The research effort demonstrates that with the reduced operating cost and the improved overall efficiency,the proposed model can assist operations of the airports that are facing increasing traffic demand and working at almost maximum capacity.