Active matter exhibits collective motions at various scales.Geometric confinement has been identified as an effective way to control and manipulate active fluids,with much attention given to external factors.However,t...Active matter exhibits collective motions at various scales.Geometric confinement has been identified as an effective way to control and manipulate active fluids,with much attention given to external factors.However,the impact of the inherent properties of active particles on collective motion under confined conditions remains elusive.Here,we use a highly tunable active nematics model to study active systems under confinement,focusing on the effect of the self-driven speed of active particles.We identify three distinct states characterized by unique particle and flow fields within confined active nematic systems,among which circular rotation emerges as a collective motion involving rotational movement in both particle and flow fields.The theoretical phase diagram shows that increasing the self-driven speed of active particles significantly enhances the region of the circular rotation state and improves its stability.Our results provide insights into the formation of high quality vortices in confined active nematic systems.展开更多
Soil microbiological and biochemical properties under various field crop rotations such as grains, pastures and vegetables have been studied intensively under short-term period. However, there is limited information a...Soil microbiological and biochemical properties under various field crop rotations such as grains, pastures and vegetables have been studied intensively under short-term period. However, there is limited information about the influence of banana-based rotations on soil organic C, total N(TN), microbial biomasses and enzyme activities under long-term crop rotations. A field experiment arranged in a randomized complete block design with three replicates was carried out at the Wanzhong Farm in Ledong(18?37′–18?38′N, 108?46′–108?48′E), Hainan Province, China, to compare the responses of these soil parameters to long-term(10-year) banana(Musa paradisiaca)-pineapple(Ananas) rotation(AB), banana-papaya(Carica) rotation(BB) and banana monoculture(CK) in a conventional tillage system in the Hainan Island. Soil p H, total organic C(TOC), dissolved organic C(DOC), TN, total P(TP) and available P(AP) were found to be significantly higher(P < 0.01) in AB and BB than CK at 0–30 cm soil depth. Microbial biomass C(MBC) and N(MBN) were observed 18.0%–35.2% higher in AB and 8.6%–40.5% higher in BB than CK at 0–30 cm. The activities of urease(UA), invertase(IA), dehydrogenase(DA) and acid phosphatase(APA) showed a mean of 21.5%–59.6% increase in AB and 26.7%–66.1% increase in BB compared with CK at 0–30 cm. Higher p H, TOC and DOC at 0–10 and 10–20 cm than at 20–30 cm were obtained despite of the rotations. Soil MBC and MBN and activities of UA, IA and DA decreased markedly(P < 0.01) with increasing soil depth in the different rotation soils as well as the monoculture soil. In general, soil microbial biomass and enzymatic activities were more sensitive to changes in banana-based rotations than soil chemical properties, and consequently they were well-established as early indicators of changes due to crop rotations in the tropics.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or l...Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.展开更多
This paper describes a new method of QR-decomposition of square nonsingular matrices (real or complex) by the Givens rotations through the unitary discrete heap transforms. This transforms can be defined by a differen...This paper describes a new method of QR-decomposition of square nonsingular matrices (real or complex) by the Givens rotations through the unitary discrete heap transforms. This transforms can be defined by a different path, or the order of processing components of input data, which leads to different realizations of the QR-decomposition. The heap transforms are fast, because of a simple form of decomposition of their matrices. The direct calculation of the N-point discrete heap transform requires no more than 5(N-1) multiplications, 2(N-1) additions, plus 3(N-1) trigonometric operations. The QR-decomposition of the square matrix N × N uses about 4/3N3 multiplications and N(N-1)/2 square roots. This number varies depending on the path of the heap transform, and it is shown that “the optimal path” allows for significant reduction of number of operations in QR-decomposition. The heap transform and its matrix can be described analytically, and therefore, this transform can also be applied to the QR-decomposition of complex matrices.展开更多
We construct general Wigner rotations for both massive and massless particles in D-dimensional spacetime.We work out the explicit expressions of these Wigner rotations for arbitrary Lorentz transformations. We study t...We construct general Wigner rotations for both massive and massless particles in D-dimensional spacetime.We work out the explicit expressions of these Wigner rotations for arbitrary Lorentz transformations. We study the relation between the electromagnetic gauge invariance and the non-uniqueness of Wigner rotation.展开更多
When the Grover' s original algorithm is applied to search an unordered database, the success probability decreases rapidly with the increase of marked items. Aiming at this problem, a general quantum search algorith...When the Grover' s original algorithm is applied to search an unordered database, the success probability decreases rapidly with the increase of marked items. Aiming at this problem, a general quantum search algorithm with small phase rotations is proposed. Several quantum search algorithms can be derived from this algorithm according to different phase rotations. When the size of phase rotations are fixed at 0. 01π, the success probability of at least 99. 99% can be obtained in 0(√N/M) iterations.展开更多
The effects of previous cowpea (Vignaunguiculata) and annual fallow on N recoveries, succeeding sorghum yields and soil properties were studied using a 5-year-old (1995-1999) field experiment at Kouar6 (11°5...The effects of previous cowpea (Vignaunguiculata) and annual fallow on N recoveries, succeeding sorghum yields and soil properties were studied using a 5-year-old (1995-1999) field experiment at Kouar6 (11°59′ North, 0°19′ West and 850 m altitude) in Burkina Faso. A 3 4 factorial design in a split plot arrangement with three rotation treatments and four fertilizer treatments was used. Total N uptake by succeeding sorghum increased from 26 kg N ha~ in mono cropping of sorghum to 31 and 48 kg N ha~ when sorghum was rotated with fallow or cowpea respectively. Nitrogen derived from fertilizer increased from 10% in mono cropping of sorghum to 22% and 26% when sorghum was rotated with fallow or cowpea respectively. While fallow did not increase N derived from soil, cowpea doubled the quantity of N derived from soil (Ndfs). Sorghum grain yields increased from 75% and 100% when sorghum was rotated with fallow or cowpea respectively. All rotations treatments decreased soil organic C and N but soil organic C was the highest in fallow-sorghum rotation. It was concluded that cowpea-sorghum rotation was more effective than fallow-sorghum rotation and five management options were suggested to improve traditional system productivity.展开更多
This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations...This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies.展开更多
Agricultural systems based on crop rotations favour sustainability of cultivation and productivity of the crops. Wheat-forage crops rotations (annual winter binary mixture and perennial alfalfa meadow) combined with i...Agricultural systems based on crop rotations favour sustainability of cultivation and productivity of the crops. Wheat-forage crops rotations (annual winter binary mixture and perennial alfalfa meadow) combined with irrigation are the agronomical techniques able to better exploit the weather resources in Mediterranean environments. The experiment aimed to study the effect of 18 years of combined effect of irrigation and continuous durum wheat and wheat-forage rotations on productivities of crops and organic matter of topsoil. The experiments were established through 1991-2008 under rainfed and irrigated treatments and emphasized on the effect of irrigation and continuous wheat and wheat-forage crop rotations on water use efficiency and sustainability of organic matter. The effect of irrigation increased 49.1% and 66.9% the dry matter of mixture and meadow, respectively. Continuous wheat rotation reduced seed yield, stability of production, crude protein characteristics of kernel and soil organic matter. The yearly gain in wheat after forage crops was 0.04 t (ha·yr)-1 under rainfed and 0.07 t (ha·yr)-1 under irrigation treatments. The crude protein and soil organic matter of wheat rotations, compared to those of continuous wheat under rainfed and irrigated was increase in term of point percentage by 0.8 and 0.5 in crude protein and 5.1 and 4.4 in organic matter, respectively. The rotations of mixture and meadow under both irrigated treatments increased the point of percentage of organic matter over continuous wheat (9.3.and 8.5 in mixture and 12.5 and 9.5 meadow under rainfed and irrigation, respectively). Irrigation reduce the impact of weather on crop growing reducing water use efficiency (mean over rotations) for dry mater production (15.5 in meadow and 17.5 in mixture [L water (kg·dry·matter)-1 ]) and wheat seed yield. The effect of agronomic advantages achieved by forage crops in topsoil expire its effect after three years of continuous wheat rotation.展开更多
This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix...This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.展开更多
Identification of management practices that can improve soil health is critical to improving the sustainability of soybean [Glycine max (L.) Merr.] production. The objective of this study was to examine the long-term ...Identification of management practices that can improve soil health is critical to improving the sustainability of soybean [Glycine max (L.) Merr.] production. The objective of this study was to examine the long-term effects of continuous soybean, corn-soybean, and soybean-cotton rotations with chicken litter and cover crops (hairy vetch, wheat, fallow) on soil health parameters, including nutrient accumulation and soil organic matter dynamics under a split plot design. The depth intervals of soil sampling were 0 - 15, 15 - 30, 30 - 60, and 60 - 90 cm. Chicken litter resulted in 62.1% and 32.8% higher water extractable organic soil N content than fallow and wheat, respectively, in the surface 0 - 15 cm of soil only. However, there was no significant difference in 1-day Solvita respiration, water extractable organic C, C/N ratio, health score, moisture, earthworm, organic matter, pH, or CEC of soil among fallow, hairy vetch, chicken litter, and wheat regardless of soil depth. Unexpectedly, annual application of chicken litter at 4.4 Mg ha−1 as an N source or growing a winter-season cover crop such as hairy vetch or wheat for continuous 16 years did not significantly increase soil organic matter or water extractable organic soil C. Annual application of chicken litter at 4.4 metric tons (Mg) ha–1 for 16 years increased soil nitrate-nitrogen (NO3−-N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn) contents by 92%, 400%, 134%, 20%, 43%, 206%, and 430% in 0 - 15 cm depth compared with their initial soil values, respectively, extracted with Haney H3A-2 (2 g L–1 lithium citrate + 0.6 g L–1 citric acid + 0.4 g L–1 malic acid + 0.4 g L–1 oxalic acid) solution. The increases enhanced soil supply of these nutrients to following crops, but also increased the risks of losing them to the environment. Hairy vetch caused higher H3A extracted soil manganese (Mn) content than fallow and chicken litter in 0 - 60 cm. There was no significant difference in 1-day Solvita respiration, water extractable organic C and N, health score, moisture, organic matter, pH, CEC, or population of earthworm of soil among continuous soybean, corn-soybean, and soybean-cotton in any soil depth. Another major finding of this study was that continuous soybean exerted no adverse effect on soil health relative to the commonly used corn (Zea mays L.)-soybean and soybean-cotton (Gossypium hirsutum L.) rotations under no-tillage after 16 years. To mitigate the risks of nutrient runoff and leaching from long-term chicken litter application, we recommend reducing litter application rates and integrating cover crops into crop rotations to enhance nutrient cycling and reduce environmental impacts.展开更多
To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six ...To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six different rice––winter crop rotations: rice–fallow(RF),rice–wheat(RW), rice–potato with rice straw mulch(RP), rice–green manure(Chinese milk vetch; RC–G), rice–oilseed rape(RO), and rice–green manure crop(oilseed rape with fresh straw incorporated into soil at flowering; RO–G) and three N rates, N0(0 kg N ha-1), N1(142.5 kg N ha-1), and N2(202.5 kg N ha-1). Average rice yields in the RF(5.93 t ha-1) rotation were significantly lower than those in the rotations with winter crops(7.20–7.48 t ha-1)under the N0 treatment, suggesting that incorporation of straw might be more effective for increasing soil N than winter fallow. The rice yield differences among the rotations varied by year with the N input. In general, the grain yields in the RP and RO–G rotations –were respectively 11.6–28.5% and 14.80–37.19% higher than those in the RF in plots with N applied. Increasing the N rate may have tended to minimize the average yield gap between the RF and the other rotations; the yield gaps were 18.55%, 4.14%, and 0.23% in N0, N1, and N2, respectively. However, the N recovery efficiency in the RF was significantly lower than that in other rotations, except for 2015 under both N1 and N2 rates, a finding that implies a large amount of chemical N loss. No significant differences in nitrogen agronomic efficiency(NAE) and physiological efficiency(NPE) were found between the rotations with legume(RC–G) and non–legume(RO and RW) winter crops, a result that may be due partly to straw incorporation. For this reason, we concluded that the return of straw could reduce differences in N use efficiency between rotations with and without legume crops. The degree of synchrony between the crop N demand and the N supply was evaluated by comparison of nitrogen balance degree(NBD) values. The NBD values in the RP and RW were significantly lower than those in the other rotations under both N1 and N2 rates. Thus,in view of the higher grain yield in the RP compared to the RW under the N1 rate, the RP rotation might be a promising practice with comparable grain yield and greater N use efficiency under reduced N input relative to the other rotations. The primary yield components of the RF and RP were identified as number of panicles m-2 and numbers of kernels panicle-1, respectively. The NAE and NPE were positively correlated with harvest index, possibly providing a useful indicator for evaluating N use efficiency.展开更多
A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode co...A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation (AB), banana-papaya rotation (BB) and banana monoculture (CK) in a conventional tillage system. Soil samples were taken at depths of 0-10, 10-20 and 20-30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity (Ht), dominance index (A), maturity index (MI), plant parasite index (PPI), structure index (SI), enrichment index (EI), and channel index (CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister (c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and EI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation. Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices (λ and MI).展开更多
We simulate GPS horizontal velocity field in terms of rotations of crustal blocks to describe deformation behavior of the Chinese mainland and its neighboring areas. 31 crustal blocks are bounded primarily by -30 Quat...We simulate GPS horizontal velocity field in terms of rotations of crustal blocks to describe deformation behavior of the Chinese mainland and its neighboring areas. 31 crustal blocks are bounded primarily by -30 Quaternary faults with distinct geometries and variable long-term rates of 〈20 mm/a, and 1 683 GPS velocities were determined from decade-long observations mostly with an averaged uncertainty of 1-2 mm/a. We define GPS velocity at a site by the combination of motion of rigid block and elastic strain induced by the fault that is locking during a seismic cycle. Model velocities predicted from the preferable block model match well with the GPS velocities to an uncertainty of-l.7mm/a. The slip rates inferred from this model is in a range of 6-18 mm/a for the major faults in Tibet and its margins and 1-4 mm/a in eastern China, consistent with geological observations. Our numerical simulation suggests that the crustal blocks deform internally at a level of-10× 10^-9/a, quite small in comparison with significant deformation localized along fault zones of 50-100 km wide. We conclude that the pattern of continental deformation is not continuous-like but block-like, and the tenet of plate tectonics may be applicable to characterize the active deformation in Asia.展开更多
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the n...A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV).展开更多
Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene cont...Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene continental rocks of the Hoh Xii basin in order to better understand the tectonic rotations of central Tibet. The study area was located in the Tongtianhe area located in the southern part of the Hoh Xil basin and northern margin of the Tanggula thrust system in central-northern Tibet. A total of 160 independently oriented paleomagnetic samples were drilled from the Tongtianhe section for this study. The magnetic properties of magnetite and hematite have been recognized by measurements of magnetic susceptibility vs. temperature curves and unbiocking temperatures. The mean directions of the Oligocene Yaxicuo Group in stratigraphic coordinates (Declination/Inclination = 354.9°/29.3°, k = 33.0, a9s = 13.5°, N =5 Sites) and of the Miocene Wudaoliang Group in stratigraphic coordinates (Declination/Inclination = 3.60/36.4°, k = 161.0, a9s = 9.7°, N =3 Sites) pass reversal tests, indicating the primary nature of the characteristic magnetizations. Our results suggested that the sampled areas in the Tuotuohe depression of the Hoh Xil basin have undergone no paleomagnetically detectable rotations under single thrusting from the Tanggula thrust system. Our findings, together with constraints from other tectonic characteristics reported by previous paleomagnetic studies, suggest tectonic rotations in the Cuoredejia and Wudaoliang depressions of the Hoh Xil basin were affected by strike-slip faulting of the Fenghuo Shan-Nangqian thrust systems. A closer examination of geological data and different vertical-axis rotation magnitudes suggest the tectonic history of the Hoh Xil basin may be controlled by thrust and strike-slip faulting since the Eocene.展开更多
The non-uniqueness of the transition from nonobjective constitutive relations to objective ones with the use of the principle of material frame-indifference(PMFI)is shown.To eliminate it,the concept of finite strain w...The non-uniqueness of the transition from nonobjective constitutive relations to objective ones with the use of the principle of material frame-indifference(PMFI)is shown.To eliminate it,the concept of finite strain without rotations(FSWR)for a given material type and each strain component(elastic,plastic) is introduced.In FSWR the rotation is excluded with respect to the natural preferred configuration for a given material.Considered are a simple solid,a liquid,a mouocrystal,a polycrystal and a composite.The procedure is proposed lbr consistent generalization of known infinitesimal relations for finite strains and rota- tions.The structure of constitutive relations is derived for anisotropic elasto-plastic mono-and polycrystalline materials.展开更多
The dynamic analysis of a generalized linear elastic body undergoing large rigid rotations is investigated. The generalized linear elastic body is described in kine- matics through translational and rotational deforma...The dynamic analysis of a generalized linear elastic body undergoing large rigid rotations is investigated. The generalized linear elastic body is described in kine- matics through translational and rotational deformations, and a modified constitutive relation for the rotational deformation is proposed between the couple stress and the curvature tensor. Thus, the balance equations of momentum and moment are used for the motion equations of the body. The floating frame of reference formulation is applied to the elastic body that conducts rotations about a fixed axis. The motion-deformation coupled model is developed in which three types of inertia forces along with their incre- ments are elucidated. The finite element governing equations for the dynamic analysis of the elastic body under large rotations are subsequently formulated with the aid of the constrained variational principle. A penalty parameter is introduced, and the rotational angles at element nodes are treated as independent variables to meet the requirement of C1 continuity. The elastic body is discretized through the isoparametric element with 8 nodes and 48 degrees-of-freedom. As an example with an application of the motion- deformation coupled model, the dynamic analysis on a rotating cantilever with two spatial layouts relative to the rotational axis is numerically implemented. Dynamic frequencies of the rotating cantilever are presented at prescribed constant spin velocities. The maximal rigid rotational velocity is extended for ensuring the applicability of the linear model. A complete set of dynamical response of the rotating cantilever in the case of spin-up maneuver is examined, it is shown that, under the ultimate rigid rotational velocities less than the maximal rigid rotational velocity, the stress strength may exceed the material strength tolerance even though the displacement and rotational angle responses are both convergent. The influence of the cantilever layouts on their responses and the multiple displacement trajectories observed in the floating frame is simultaneously investigated. The motion-deformation coupled model is surely expected to be applicable for a broad range of practical applications.展开更多
Tobacco-planting plays an important role in ensuring the high-quality tobacco raw materials supply and the local social and economic development in Chenzhou City. In recent years whether tobacco-planting is better for...Tobacco-planting plays an important role in ensuring the high-quality tobacco raw materials supply and the local social and economic development in Chenzhou City. In recent years whether tobacco-planting is better for the maintenance and improvement of soil fertility than other crop-planting has been highly concerned. In this study, 16 soil fertility indicators and soil integrated index (<em>IFI</em>) were compared by 21 pairs of fields in Chenzhou city under the rotations of tobacco-rice (TF) and rice-rice (RR), and results showed that, comparing the mean values of soil fertility indicators, the contents of OM, TN, AN, AK, S and <em>IFI</em> were extremely significantly higher in TR than those in RR (p < 0.01), the contents of Cu, Ca, Mg and Fe were significantly higher in TR than those in RR (p < 0.05), but Mn content was significantly lower in TR than those in RR (p < 0.05). Meanwhile the contents of TP, TK and AP were insignificantly higher in TR than those in RR, and the contents of B, Mo and Zn were insignificantly lower in TR than those in RR. The above significant differences in soil fertility indicators were mainly due to relatively higher fertilizer inputs and less nutrient removal during tobacco-growing season than during rape-growing season, the net increase of N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O are 8.61, 5.25 and 24.89 kg per 667 m<sup>2</sup> respectively in tobacco-growing season, while the net decrease of N, P<sub>2</sub>O<sub>5 </sub>and K<sub>2</sub>O are 8.88, 4.70 and 4.62 kg per 667 m<sup>2</sup> respectively in rape-growing season. C.V. of soil fertility indicators and <em>IFI</em> were meanly lower in TR (52.25% and 15.95%, respectively) than those in RR (63.07% and 22.12%, respectively). Comparatively, tobacco-planting can improve soil fertility better than rape-planting when rotated with late rice in Chenzhou city. For tobacco-planting, Mg fertilizer should be applied for 23.8% TR fields, while more N, K, Ca, Mg, S and B fertilizers should be applied for 42.86%, 23.81%, 14.29%, 47.62%, 80.95% and 47.62% RR fields, respectively.展开更多
基金supported by the National Key Research and Development Program of China under Grant No.2022YFA1405000Innovation Program for Quantum Science and Technology under Grant No.2024ZD0300101the National Natural Science Foundation of China under Grant Nos.12274212,12174184,12347102。
文摘Active matter exhibits collective motions at various scales.Geometric confinement has been identified as an effective way to control and manipulate active fluids,with much attention given to external factors.However,the impact of the inherent properties of active particles on collective motion under confined conditions remains elusive.Here,we use a highly tunable active nematics model to study active systems under confinement,focusing on the effect of the self-driven speed of active particles.We identify three distinct states characterized by unique particle and flow fields within confined active nematic systems,among which circular rotation emerges as a collective motion involving rotational movement in both particle and flow fields.The theoretical phase diagram shows that increasing the self-driven speed of active particles significantly enhances the region of the circular rotation state and improves its stability.Our results provide insights into the formation of high quality vortices in confined active nematic systems.
基金supported by the National Natural Science Foundation of China (No. 41301277)the Natural Science Foundation of Hainan Province, China (No. 310073)
文摘Soil microbiological and biochemical properties under various field crop rotations such as grains, pastures and vegetables have been studied intensively under short-term period. However, there is limited information about the influence of banana-based rotations on soil organic C, total N(TN), microbial biomasses and enzyme activities under long-term crop rotations. A field experiment arranged in a randomized complete block design with three replicates was carried out at the Wanzhong Farm in Ledong(18?37′–18?38′N, 108?46′–108?48′E), Hainan Province, China, to compare the responses of these soil parameters to long-term(10-year) banana(Musa paradisiaca)-pineapple(Ananas) rotation(AB), banana-papaya(Carica) rotation(BB) and banana monoculture(CK) in a conventional tillage system in the Hainan Island. Soil p H, total organic C(TOC), dissolved organic C(DOC), TN, total P(TP) and available P(AP) were found to be significantly higher(P < 0.01) in AB and BB than CK at 0–30 cm soil depth. Microbial biomass C(MBC) and N(MBN) were observed 18.0%–35.2% higher in AB and 8.6%–40.5% higher in BB than CK at 0–30 cm. The activities of urease(UA), invertase(IA), dehydrogenase(DA) and acid phosphatase(APA) showed a mean of 21.5%–59.6% increase in AB and 26.7%–66.1% increase in BB compared with CK at 0–30 cm. Higher p H, TOC and DOC at 0–10 and 10–20 cm than at 20–30 cm were obtained despite of the rotations. Soil MBC and MBN and activities of UA, IA and DA decreased markedly(P < 0.01) with increasing soil depth in the different rotation soils as well as the monoculture soil. In general, soil microbial biomass and enzymatic activities were more sensitive to changes in banana-based rotations than soil chemical properties, and consequently they were well-established as early indicators of changes due to crop rotations in the tropics.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
基金funded by the Indian Council of Agricultural Research(ICAR),New Delhi
文摘Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.
文摘This paper describes a new method of QR-decomposition of square nonsingular matrices (real or complex) by the Givens rotations through the unitary discrete heap transforms. This transforms can be defined by a different path, or the order of processing components of input data, which leads to different realizations of the QR-decomposition. The heap transforms are fast, because of a simple form of decomposition of their matrices. The direct calculation of the N-point discrete heap transform requires no more than 5(N-1) multiplications, 2(N-1) additions, plus 3(N-1) trigonometric operations. The QR-decomposition of the square matrix N × N uses about 4/3N3 multiplications and N(N-1)/2 square roots. This number varies depending on the path of the heap transform, and it is shown that “the optimal path” allows for significant reduction of number of operations in QR-decomposition. The heap transform and its matrix can be described analytically, and therefore, this transform can also be applied to the QR-decomposition of complex matrices.
基金Supported by the National Natural Science Foundation of China under Grant No.11475016by the Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘We construct general Wigner rotations for both massive and massless particles in D-dimensional spacetime.We work out the explicit expressions of these Wigner rotations for arbitrary Lorentz transformations. We study the relation between the electromagnetic gauge invariance and the non-uniqueness of Wigner rotation.
基金Supported by National Natural Science Foundation of China ( No. 60773065 ).
文摘When the Grover' s original algorithm is applied to search an unordered database, the success probability decreases rapidly with the increase of marked items. Aiming at this problem, a general quantum search algorithm with small phase rotations is proposed. Several quantum search algorithms can be derived from this algorithm according to different phase rotations. When the size of phase rotations are fixed at 0. 01π, the success probability of at least 99. 99% can be obtained in 0(√N/M) iterations.
文摘The effects of previous cowpea (Vignaunguiculata) and annual fallow on N recoveries, succeeding sorghum yields and soil properties were studied using a 5-year-old (1995-1999) field experiment at Kouar6 (11°59′ North, 0°19′ West and 850 m altitude) in Burkina Faso. A 3 4 factorial design in a split plot arrangement with three rotation treatments and four fertilizer treatments was used. Total N uptake by succeeding sorghum increased from 26 kg N ha~ in mono cropping of sorghum to 31 and 48 kg N ha~ when sorghum was rotated with fallow or cowpea respectively. Nitrogen derived from fertilizer increased from 10% in mono cropping of sorghum to 22% and 26% when sorghum was rotated with fallow or cowpea respectively. While fallow did not increase N derived from soil, cowpea doubled the quantity of N derived from soil (Ndfs). Sorghum grain yields increased from 75% and 100% when sorghum was rotated with fallow or cowpea respectively. All rotations treatments decreased soil organic C and N but soil organic C was the highest in fallow-sorghum rotation. It was concluded that cowpea-sorghum rotation was more effective than fallow-sorghum rotation and five management options were suggested to improve traditional system productivity.
文摘This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies.
文摘Agricultural systems based on crop rotations favour sustainability of cultivation and productivity of the crops. Wheat-forage crops rotations (annual winter binary mixture and perennial alfalfa meadow) combined with irrigation are the agronomical techniques able to better exploit the weather resources in Mediterranean environments. The experiment aimed to study the effect of 18 years of combined effect of irrigation and continuous durum wheat and wheat-forage rotations on productivities of crops and organic matter of topsoil. The experiments were established through 1991-2008 under rainfed and irrigated treatments and emphasized on the effect of irrigation and continuous wheat and wheat-forage crop rotations on water use efficiency and sustainability of organic matter. The effect of irrigation increased 49.1% and 66.9% the dry matter of mixture and meadow, respectively. Continuous wheat rotation reduced seed yield, stability of production, crude protein characteristics of kernel and soil organic matter. The yearly gain in wheat after forage crops was 0.04 t (ha·yr)-1 under rainfed and 0.07 t (ha·yr)-1 under irrigation treatments. The crude protein and soil organic matter of wheat rotations, compared to those of continuous wheat under rainfed and irrigated was increase in term of point percentage by 0.8 and 0.5 in crude protein and 5.1 and 4.4 in organic matter, respectively. The rotations of mixture and meadow under both irrigated treatments increased the point of percentage of organic matter over continuous wheat (9.3.and 8.5 in mixture and 12.5 and 9.5 meadow under rainfed and irrigation, respectively). Irrigation reduce the impact of weather on crop growing reducing water use efficiency (mean over rotations) for dry mater production (15.5 in meadow and 17.5 in mixture [L water (kg·dry·matter)-1 ]) and wheat seed yield. The effect of agronomic advantages achieved by forage crops in topsoil expire its effect after three years of continuous wheat rotation.
文摘This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.
文摘Identification of management practices that can improve soil health is critical to improving the sustainability of soybean [Glycine max (L.) Merr.] production. The objective of this study was to examine the long-term effects of continuous soybean, corn-soybean, and soybean-cotton rotations with chicken litter and cover crops (hairy vetch, wheat, fallow) on soil health parameters, including nutrient accumulation and soil organic matter dynamics under a split plot design. The depth intervals of soil sampling were 0 - 15, 15 - 30, 30 - 60, and 60 - 90 cm. Chicken litter resulted in 62.1% and 32.8% higher water extractable organic soil N content than fallow and wheat, respectively, in the surface 0 - 15 cm of soil only. However, there was no significant difference in 1-day Solvita respiration, water extractable organic C, C/N ratio, health score, moisture, earthworm, organic matter, pH, or CEC of soil among fallow, hairy vetch, chicken litter, and wheat regardless of soil depth. Unexpectedly, annual application of chicken litter at 4.4 Mg ha−1 as an N source or growing a winter-season cover crop such as hairy vetch or wheat for continuous 16 years did not significantly increase soil organic matter or water extractable organic soil C. Annual application of chicken litter at 4.4 metric tons (Mg) ha–1 for 16 years increased soil nitrate-nitrogen (NO3−-N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn) contents by 92%, 400%, 134%, 20%, 43%, 206%, and 430% in 0 - 15 cm depth compared with their initial soil values, respectively, extracted with Haney H3A-2 (2 g L–1 lithium citrate + 0.6 g L–1 citric acid + 0.4 g L–1 malic acid + 0.4 g L–1 oxalic acid) solution. The increases enhanced soil supply of these nutrients to following crops, but also increased the risks of losing them to the environment. Hairy vetch caused higher H3A extracted soil manganese (Mn) content than fallow and chicken litter in 0 - 60 cm. There was no significant difference in 1-day Solvita respiration, water extractable organic C and N, health score, moisture, organic matter, pH, CEC, or population of earthworm of soil among continuous soybean, corn-soybean, and soybean-cotton in any soil depth. Another major finding of this study was that continuous soybean exerted no adverse effect on soil health relative to the commonly used corn (Zea mays L.)-soybean and soybean-cotton (Gossypium hirsutum L.) rotations under no-tillage after 16 years. To mitigate the risks of nutrient runoff and leaching from long-term chicken litter application, we recommend reducing litter application rates and integrating cover crops into crop rotations to enhance nutrient cycling and reduce environmental impacts.
基金The National Key Research and Development Program of China(2016YFD0300108,2016YFD0300208-02)the National Natural Science Foundation of China(31671638)+1 种基金the China Agriculture Research System(CARS-01-04A)the Special Fund for Agro-scientific Research in the Public Interest(201203096)partly supported this study
文摘To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six different rice––winter crop rotations: rice–fallow(RF),rice–wheat(RW), rice–potato with rice straw mulch(RP), rice–green manure(Chinese milk vetch; RC–G), rice–oilseed rape(RO), and rice–green manure crop(oilseed rape with fresh straw incorporated into soil at flowering; RO–G) and three N rates, N0(0 kg N ha-1), N1(142.5 kg N ha-1), and N2(202.5 kg N ha-1). Average rice yields in the RF(5.93 t ha-1) rotation were significantly lower than those in the rotations with winter crops(7.20–7.48 t ha-1)under the N0 treatment, suggesting that incorporation of straw might be more effective for increasing soil N than winter fallow. The rice yield differences among the rotations varied by year with the N input. In general, the grain yields in the RP and RO–G rotations –were respectively 11.6–28.5% and 14.80–37.19% higher than those in the RF in plots with N applied. Increasing the N rate may have tended to minimize the average yield gap between the RF and the other rotations; the yield gaps were 18.55%, 4.14%, and 0.23% in N0, N1, and N2, respectively. However, the N recovery efficiency in the RF was significantly lower than that in other rotations, except for 2015 under both N1 and N2 rates, a finding that implies a large amount of chemical N loss. No significant differences in nitrogen agronomic efficiency(NAE) and physiological efficiency(NPE) were found between the rotations with legume(RC–G) and non–legume(RO and RW) winter crops, a result that may be due partly to straw incorporation. For this reason, we concluded that the return of straw could reduce differences in N use efficiency between rotations with and without legume crops. The degree of synchrony between the crop N demand and the N supply was evaluated by comparison of nitrogen balance degree(NBD) values. The NBD values in the RP and RW were significantly lower than those in the other rotations under both N1 and N2 rates. Thus,in view of the higher grain yield in the RP compared to the RW under the N1 rate, the RP rotation might be a promising practice with comparable grain yield and greater N use efficiency under reduced N input relative to the other rotations. The primary yield components of the RF and RP were identified as number of panicles m-2 and numbers of kernels panicle-1, respectively. The NAE and NPE were positively correlated with harvest index, possibly providing a useful indicator for evaluating N use efficiency.
基金supported by the National Natural Science Foundation of China (No. 41301277)the Natural Science Foundation of Hainan Province, China (No. 310073)
文摘A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation (AB), banana-papaya rotation (BB) and banana monoculture (CK) in a conventional tillage system. Soil samples were taken at depths of 0-10, 10-20 and 20-30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity (Ht), dominance index (A), maturity index (MI), plant parasite index (PPI), structure index (SI), enrichment index (EI), and channel index (CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister (c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and EI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation. Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices (λ and MI).
基金supported bythe National Natural Science Foundation of China(No.40674054,40774014 and 40974012)Foundation of Institute of Seismology CEA(IS200856059)
文摘We simulate GPS horizontal velocity field in terms of rotations of crustal blocks to describe deformation behavior of the Chinese mainland and its neighboring areas. 31 crustal blocks are bounded primarily by -30 Quaternary faults with distinct geometries and variable long-term rates of 〈20 mm/a, and 1 683 GPS velocities were determined from decade-long observations mostly with an averaged uncertainty of 1-2 mm/a. We define GPS velocity at a site by the combination of motion of rigid block and elastic strain induced by the fault that is locking during a seismic cycle. Model velocities predicted from the preferable block model match well with the GPS velocities to an uncertainty of-l.7mm/a. The slip rates inferred from this model is in a range of 6-18 mm/a for the major faults in Tibet and its margins and 1-4 mm/a in eastern China, consistent with geological observations. Our numerical simulation suggests that the crustal blocks deform internally at a level of-10× 10^-9/a, quite small in comparison with significant deformation localized along fault zones of 50-100 km wide. We conclude that the pattern of continental deformation is not continuous-like but block-like, and the tenet of plate tectonics may be applicable to characterize the active deformation in Asia.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant Nos.2018B56414 and2019B12014)the National Natural Science Foundation of China(Grant No.51609077)
文摘A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV).
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.41102064 and 41230313US National Science Foundation project EAR 1250444
文摘Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene continental rocks of the Hoh Xii basin in order to better understand the tectonic rotations of central Tibet. The study area was located in the Tongtianhe area located in the southern part of the Hoh Xil basin and northern margin of the Tanggula thrust system in central-northern Tibet. A total of 160 independently oriented paleomagnetic samples were drilled from the Tongtianhe section for this study. The magnetic properties of magnetite and hematite have been recognized by measurements of magnetic susceptibility vs. temperature curves and unbiocking temperatures. The mean directions of the Oligocene Yaxicuo Group in stratigraphic coordinates (Declination/Inclination = 354.9°/29.3°, k = 33.0, a9s = 13.5°, N =5 Sites) and of the Miocene Wudaoliang Group in stratigraphic coordinates (Declination/Inclination = 3.60/36.4°, k = 161.0, a9s = 9.7°, N =3 Sites) pass reversal tests, indicating the primary nature of the characteristic magnetizations. Our results suggested that the sampled areas in the Tuotuohe depression of the Hoh Xil basin have undergone no paleomagnetically detectable rotations under single thrusting from the Tanggula thrust system. Our findings, together with constraints from other tectonic characteristics reported by previous paleomagnetic studies, suggest tectonic rotations in the Cuoredejia and Wudaoliang depressions of the Hoh Xil basin were affected by strike-slip faulting of the Fenghuo Shan-Nangqian thrust systems. A closer examination of geological data and different vertical-axis rotation magnitudes suggest the tectonic history of the Hoh Xil basin may be controlled by thrust and strike-slip faulting since the Eocene.
文摘The non-uniqueness of the transition from nonobjective constitutive relations to objective ones with the use of the principle of material frame-indifference(PMFI)is shown.To eliminate it,the concept of finite strain without rotations(FSWR)for a given material type and each strain component(elastic,plastic) is introduced.In FSWR the rotation is excluded with respect to the natural preferred configuration for a given material.Considered are a simple solid,a liquid,a mouocrystal,a polycrystal and a composite.The procedure is proposed lbr consistent generalization of known infinitesimal relations for finite strains and rota- tions.The structure of constitutive relations is derived for anisotropic elasto-plastic mono-and polycrystalline materials.
基金supported by the Joint Fund of the National Natural Science Foundation of Chinathe China Academy of Engineering Physics(No.11176035)+1 种基金the National Natural Science Foundation of China(No.11072276)the National Basic Research Program of China(No.2011CB612211)
文摘The dynamic analysis of a generalized linear elastic body undergoing large rigid rotations is investigated. The generalized linear elastic body is described in kine- matics through translational and rotational deformations, and a modified constitutive relation for the rotational deformation is proposed between the couple stress and the curvature tensor. Thus, the balance equations of momentum and moment are used for the motion equations of the body. The floating frame of reference formulation is applied to the elastic body that conducts rotations about a fixed axis. The motion-deformation coupled model is developed in which three types of inertia forces along with their incre- ments are elucidated. The finite element governing equations for the dynamic analysis of the elastic body under large rotations are subsequently formulated with the aid of the constrained variational principle. A penalty parameter is introduced, and the rotational angles at element nodes are treated as independent variables to meet the requirement of C1 continuity. The elastic body is discretized through the isoparametric element with 8 nodes and 48 degrees-of-freedom. As an example with an application of the motion- deformation coupled model, the dynamic analysis on a rotating cantilever with two spatial layouts relative to the rotational axis is numerically implemented. Dynamic frequencies of the rotating cantilever are presented at prescribed constant spin velocities. The maximal rigid rotational velocity is extended for ensuring the applicability of the linear model. A complete set of dynamical response of the rotating cantilever in the case of spin-up maneuver is examined, it is shown that, under the ultimate rigid rotational velocities less than the maximal rigid rotational velocity, the stress strength may exceed the material strength tolerance even though the displacement and rotational angle responses are both convergent. The influence of the cantilever layouts on their responses and the multiple displacement trajectories observed in the floating frame is simultaneously investigated. The motion-deformation coupled model is surely expected to be applicable for a broad range of practical applications.
文摘Tobacco-planting plays an important role in ensuring the high-quality tobacco raw materials supply and the local social and economic development in Chenzhou City. In recent years whether tobacco-planting is better for the maintenance and improvement of soil fertility than other crop-planting has been highly concerned. In this study, 16 soil fertility indicators and soil integrated index (<em>IFI</em>) were compared by 21 pairs of fields in Chenzhou city under the rotations of tobacco-rice (TF) and rice-rice (RR), and results showed that, comparing the mean values of soil fertility indicators, the contents of OM, TN, AN, AK, S and <em>IFI</em> were extremely significantly higher in TR than those in RR (p < 0.01), the contents of Cu, Ca, Mg and Fe were significantly higher in TR than those in RR (p < 0.05), but Mn content was significantly lower in TR than those in RR (p < 0.05). Meanwhile the contents of TP, TK and AP were insignificantly higher in TR than those in RR, and the contents of B, Mo and Zn were insignificantly lower in TR than those in RR. The above significant differences in soil fertility indicators were mainly due to relatively higher fertilizer inputs and less nutrient removal during tobacco-growing season than during rape-growing season, the net increase of N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O are 8.61, 5.25 and 24.89 kg per 667 m<sup>2</sup> respectively in tobacco-growing season, while the net decrease of N, P<sub>2</sub>O<sub>5 </sub>and K<sub>2</sub>O are 8.88, 4.70 and 4.62 kg per 667 m<sup>2</sup> respectively in rape-growing season. C.V. of soil fertility indicators and <em>IFI</em> were meanly lower in TR (52.25% and 15.95%, respectively) than those in RR (63.07% and 22.12%, respectively). Comparatively, tobacco-planting can improve soil fertility better than rape-planting when rotated with late rice in Chenzhou city. For tobacco-planting, Mg fertilizer should be applied for 23.8% TR fields, while more N, K, Ca, Mg, S and B fertilizers should be applied for 42.86%, 23.81%, 14.29%, 47.62%, 80.95% and 47.62% RR fields, respectively.