Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free sh...Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore,the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.展开更多
Based on the continuity of the derivatives of the Non-Uniform Rational B-Splines (NURBS) curve and the Jaumann strain measure, the present paper adopted the position coordinates of the control points as the degrees of...Based on the continuity of the derivatives of the Non-Uniform Rational B-Splines (NURBS) curve and the Jaumann strain measure, the present paper adopted the position coordinates of the control points as the degrees of freedom and developed a planar rotation-free Euler-Bernoulli beam element for isogeometric analysis, where the derivatives of the field variables with respect to the arc-length were expressed as the sum of the weighted sum of the position coordinates of the control points, and the NURBS basis functions were used as the weight functions. Furthermore, the concept of bending strip was used to involve the rigid connection between multiple patches. Several typical examples with geometric nonlinearities were used to demonstrate the accuracy and effectiveness of the proposed algorithm. The presented formulation fully accounts for the geometric nonlinearities and can be used to study the snap-through and snap-back phenomena of flexible beams.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11772188, 11132007)
文摘Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore,the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.
基金Project supported by the National Natural Science Foundation of China(Nos.11572132 and 11572137)
文摘Based on the continuity of the derivatives of the Non-Uniform Rational B-Splines (NURBS) curve and the Jaumann strain measure, the present paper adopted the position coordinates of the control points as the degrees of freedom and developed a planar rotation-free Euler-Bernoulli beam element for isogeometric analysis, where the derivatives of the field variables with respect to the arc-length were expressed as the sum of the weighted sum of the position coordinates of the control points, and the NURBS basis functions were used as the weight functions. Furthermore, the concept of bending strip was used to involve the rigid connection between multiple patches. Several typical examples with geometric nonlinearities were used to demonstrate the accuracy and effectiveness of the proposed algorithm. The presented formulation fully accounts for the geometric nonlinearities and can be used to study the snap-through and snap-back phenomena of flexible beams.