期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Single atom Cu-N-C catalysts for the electro-reduction of CO_(2) to CO assessed by rotating ring-disc electrode
1
作者 S.Pérez-Rodríguez M.Gutiérrez-Roa +6 位作者 C.Giménez-Rubio D.Ríos-Ruiz P.Arévalo-Cid M.V.Martínez-Huerta A.Zitolo M.J.Lázaro D.Sebastián 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期169-182,I0004,共15页
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c... The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR. 展开更多
关键词 Cu-N-C Carbon xerogel rotating ring disc electrode Carbon dioxide reduction reaction Carbon monoxide
在线阅读 下载PDF
Investigation on the Electrochemical Polymerization of Catechol by Means of Rotating Ring-disk Electrode 被引量:1
2
作者 孔泳 穆绍林 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2003年第6期630-637,共8页
The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol wa... The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol was performed by one step, and at higher pH values, the electrochemical polymerization of catechol was carried out by two steps, i.e . oxidation of catechol and followed by polymerization. The intermediates generated at the disk were detected at the ring electrode in the ring potential region of -0.2 to 0 V (vs. Ag/AgCl). One of reasons for the decrease in the ratio of i r to i d with increasing the ring potential is caused by formation of positively charged intermediates at the disk electrode. This ratio increases with increasing the rotation rate of the RRDE, which indicates that the intermediates are not stable. A shielding effect during polymerization of catechol was observed when the ring potential was set at 0.1 V (vs. Ag/AgCl). The electron spin resonance (ESR) of polycatechol shows that polycatechol possesses unpaired electrons. The images of polycatechol films synthesized at different conditions are described. 展开更多
关键词 electrochemical polymerization CATECHOL rotating ring disk electrode INTERMEDIATES electron spin resonance scanning electron micrographs
原文传递
Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface
3
作者 Yao Yao Juping Xu Minhua Shao 《Chinese Journal of Catalysis》 2025年第6期271-278,共8页
Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-prot... Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-proton transfers more complex when determining kinetics and mass transfer information.Understanding how HER competes with other electrochemical reduction reactions is crucial for both fundamental studies and system performance improvements.In this study,we employed the oxygen reduction reaction(ORR)as a model reaction to investigate HER competition on a polycrystalline-Au surface,using a rotating ring and disk electrode.It’s proved that water molecules serve as the proton source for ORR in alkaline,neutral,and even acidic electrolytes,and a 4-electron process can be achieved when the overpotential is sufficiently high.The competition from H⁺reduction becomes noticeable at the H⁺concentration higher than 2 mmol L^(–1)and intensi-fies as the H^(+)concentration increases.Based on the electrochemical results,we obtained an equivalent circuit diagram for the ORR system with competition from the H+reduction reaction,showing that these reactions occur in parallel and compete with each other.Electrochemical impedance spectroscopy measurements further confirm this argument.Additionally,we discover that the contribution of H+mass transfer to the total H^(+)reduction current is significant and comparable to the kinetic current.We believe this work will deepen our understanding of HER and its competition in electrochemical reduction systems. 展开更多
关键词 Hydrogen evolution reaction Oxygen reduction reaction H⁺reduction competition rotating ring and disk electrode Proton source
在线阅读 下载PDF
Photoelectron momentum distributions of single-photon ionization under a pair of elliptically polarized attosecond laser pulses 被引量:1
4
作者 Hui-Fang Cui Xiang-Yang Miao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期313-320,共8页
The attosecond ionization dynamics of atoms has attracted extensive attention in these days.However,the role of the initial state is not clearly understood.To address this question,we perform simulations on the neon a... The attosecond ionization dynamics of atoms has attracted extensive attention in these days.However,the role of the initial state is not clearly understood.To address this question,we perform simulations on the neon atom and its model atom with different initial states by numerically solving the corresponding two-dimensional time-dependent Schrodinger¨equations.We theoretically investigate atomic photoelectron momentum distributions(PMDs)by a pair of elliptically polarized attosecond laser pulses.We find that the PMD is sensitive not only to the ellipticities of the pulses,the relative helicity,and time delay of the pulses,but also to the symmetry of the initial electronic states.Results are analyzed by the first-order time-dependent perturbation theory(TDPT)and offer a new tool for detecting the rotation direction of the ring currents. 展开更多
关键词 photoelectron momentum distributions elliptically polarized attosecond laser pulses magnetic quantum numbers rotation direction of the ring currents
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部