Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and comp...Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.展开更多
Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products ha...Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products has not been understood well.In the present study,we conducted long-time tests(approximately 1 ms)of a metal rod driven by detonation products of RDX,RDX/Li F,and RDX/Al.In addition,we used laser velocimetry(PDV)to measure the freesurface velocity of the rod.Thermochemical code DLCHEQ was successfully applied to the hydrodynamic program SSS to perform the roddriven test,and a novel method was established to study the EOS of detonation products from the perspective of composition.The reliability of DLCEHQ was validated by a small deviation(<10%)between the experimental rod free-surface velocity of RDX and the calculated results;the deviation was considerably less than that from the results obtained using the JWL EOS and ideal-gas EOS.The endothermic process and the reaction of Al powders(Al+H_(2)O+NO+CO_(2)→CO+H_(2)+N_(2)+Al_(2)O_(3))were analyzed by calculating the rod free-surface velocity of RDX/Li F and RDX/Al,respectively.The results of the present study demonstrated that the thermodynamic state of Al powders has notable influence on the EOS of aluminized detonation products,and the findings were compared with those of previous studies.First,the temperature equilibrium between Al powders and CHNO products is not always achieved,and the disequilibrium is more obvious when the reaction of Al powders is stronger.Second,the reaction rate of Al powders depends on pressure and Al content.Finally,the endothermic process of Al powders has a high contribution to the decrease in the work ability of RDX/Al instead of the gasconsumption mechanism of the Al reaction.More than half of the reaction heat of Al powders is used to heat itself,whereas the gas consumption during the reaction is negligible.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51875033)Fundamental Research Funds for the Central Universities of China(Grant No.2021YJS137).
文摘Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.
基金financial support provided by the National Natural Science Foundation of China(Grant No.11902276)the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC1802)+2 种基金the National Key Laboratory for Shock Wave and Detonation Physics of China(Grant No.JCKYS2019212007)the Original Scientific Research Instrument and Equipment Development Project of Southwest Jiaotong University(Grant No.XJ2021KJZK055)Sichuan Science and Technology Development Project(Grant No.2021ZYD0027)。
文摘Aluminized explosives exhibit excellent performance because the oxidation of aluminum(Al)powders enhances the pressure and temperature of detonation products.However,the equation of state(EOS)of detonation products has not been understood well.In the present study,we conducted long-time tests(approximately 1 ms)of a metal rod driven by detonation products of RDX,RDX/Li F,and RDX/Al.In addition,we used laser velocimetry(PDV)to measure the freesurface velocity of the rod.Thermochemical code DLCHEQ was successfully applied to the hydrodynamic program SSS to perform the roddriven test,and a novel method was established to study the EOS of detonation products from the perspective of composition.The reliability of DLCEHQ was validated by a small deviation(<10%)between the experimental rod free-surface velocity of RDX and the calculated results;the deviation was considerably less than that from the results obtained using the JWL EOS and ideal-gas EOS.The endothermic process and the reaction of Al powders(Al+H_(2)O+NO+CO_(2)→CO+H_(2)+N_(2)+Al_(2)O_(3))were analyzed by calculating the rod free-surface velocity of RDX/Li F and RDX/Al,respectively.The results of the present study demonstrated that the thermodynamic state of Al powders has notable influence on the EOS of aluminized detonation products,and the findings were compared with those of previous studies.First,the temperature equilibrium between Al powders and CHNO products is not always achieved,and the disequilibrium is more obvious when the reaction of Al powders is stronger.Second,the reaction rate of Al powders depends on pressure and Al content.Finally,the endothermic process of Al powders has a high contribution to the decrease in the work ability of RDX/Al instead of the gasconsumption mechanism of the Al reaction.More than half of the reaction heat of Al powders is used to heat itself,whereas the gas consumption during the reaction is negligible.