Roof bolting has long been used in underground mines across the world to provide ground support.Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. L...Roof bolting has long been used in underground mines across the world to provide ground support.Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. Lhoist North America’s Crab Orchard Mine is an underground room and pillar limestone mine that uses mechanically anchored roof bolts for ground support. The mine currently employs two different roof bolting patterns: a standard 1.5 × 1.5 m pattern, and another 0.8 × 0.8 m pattern for use in areas with particularly hazardous roof conditions. The purpose of this study is to evaluate the relative effectiveness of each bolting pattern. A series of numerical models were created using Roc Science’s RS2. The models were based on a symmetrical section of the mine at its deepest point, and were modeled using generalized Hoek-Brown failure criterion along with a discrete fracture network. A series of sensitivity analyses were performed on the models by varying parameters such as joint friction angle, crack persistence, joint randomization, and tensile strength of the limestone. Based on the results of the original models and sensitivity analyses, it appeared that the standard bolting pattern provided sufficient roof support capacity under almost all the expected conditions at the mine, since safety factors below the design value of 1.5 were only found for individual bolts in a few of the worst test cases considered.These results can help improve the mine’s productivity and reduce operating costs without compromising safety.展开更多
An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present pap...An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present paper aims to present a holistic classification of the Kalahari Formation stratigraphy in Zone 5 and define engineering properties of each lithological unit, in order to establish a safe working design. For the present objectives, collection of data was carried out through logging core from selected geotechnical boreholes drilled within vicinity of the proposed Northern mine box cut. Hydrogeological assessments and feasibility studies within the purview of study region were also considered. Geotechnical logging parameters gathered on site were derived from the Rock Mass Rating system (RMR) for design requirements [<a href="#ref1">1]. Input parameters and material characteristics taken from laboratory test results provided by KCM were incorporated in the analysis. The box cut slopes were modelled in “Rocscience software” for evaluation of safety factor using “limit equilibrium method”. Slope optimization required the slope surface to be as steep as possible while maintaining an adequate factor of safety ranging from 1.5 - 1.8. For the box cut design with optimum safety, the recommended parameters are: stable slope angle—35<span style="white-space:nowrap;">° - 40<span style="white-space:nowrap;">°;ramp angle—8<span style="white-space:nowrap;">°, depth of pit—60 meters;bench width—4.9 meters and the bench length—13.25 meters.展开更多
基金The research conducted for this study was funded by the National Institute for Occupational Safety and Health(NIOSH)under Grant Number 200-2016-90154.
文摘Roof bolting has long been used in underground mines across the world to provide ground support.Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. Lhoist North America’s Crab Orchard Mine is an underground room and pillar limestone mine that uses mechanically anchored roof bolts for ground support. The mine currently employs two different roof bolting patterns: a standard 1.5 × 1.5 m pattern, and another 0.8 × 0.8 m pattern for use in areas with particularly hazardous roof conditions. The purpose of this study is to evaluate the relative effectiveness of each bolting pattern. A series of numerical models were created using Roc Science’s RS2. The models were based on a symmetrical section of the mine at its deepest point, and were modeled using generalized Hoek-Brown failure criterion along with a discrete fracture network. A series of sensitivity analyses were performed on the models by varying parameters such as joint friction angle, crack persistence, joint randomization, and tensile strength of the limestone. Based on the results of the original models and sensitivity analyses, it appeared that the standard bolting pattern provided sufficient roof support capacity under almost all the expected conditions at the mine, since safety factors below the design value of 1.5 were only found for individual bolts in a few of the worst test cases considered.These results can help improve the mine’s productivity and reduce operating costs without compromising safety.
文摘An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present paper aims to present a holistic classification of the Kalahari Formation stratigraphy in Zone 5 and define engineering properties of each lithological unit, in order to establish a safe working design. For the present objectives, collection of data was carried out through logging core from selected geotechnical boreholes drilled within vicinity of the proposed Northern mine box cut. Hydrogeological assessments and feasibility studies within the purview of study region were also considered. Geotechnical logging parameters gathered on site were derived from the Rock Mass Rating system (RMR) for design requirements [<a href="#ref1">1]. Input parameters and material characteristics taken from laboratory test results provided by KCM were incorporated in the analysis. The box cut slopes were modelled in “Rocscience software” for evaluation of safety factor using “limit equilibrium method”. Slope optimization required the slope surface to be as steep as possible while maintaining an adequate factor of safety ranging from 1.5 - 1.8. For the box cut design with optimum safety, the recommended parameters are: stable slope angle—35<span style="white-space:nowrap;">° - 40<span style="white-space:nowrap;">°;ramp angle—8<span style="white-space:nowrap;">°, depth of pit—60 meters;bench width—4.9 meters and the bench length—13.25 meters.