The late Palaeozoic tectonic magmatism in the north-ern Qaidam tectonic belt(NQTB)related to the Palaeo-Tethys Ocean has become a critical issue.We performed a detailed geochronological and geochemical study of Lenghu...The late Palaeozoic tectonic magmatism in the north-ern Qaidam tectonic belt(NQTB)related to the Palaeo-Tethys Ocean has become a critical issue.We performed a detailed geochronological and geochemical study of Lenghu(LH)granitic rocks in the western NQTB.LA-ICP-MS U-Pb dating of zircons from LH granitic rocks yields emplacement ages of 253±4 Ma and 264±4 Ma,indicating a two-stage emplacement process.Geochemi-cal analyses show that the LH granitic rocks have low ACNK values and are enriched in LILEs(Rb,Th,Ba)and depleted in HFSEs(Sr,Nd,and Ta).The samples are enriched in LREEs(LREE/HREE=1.5-7.3).Values of(La/Yb)N range between 0.9 and 6.5,and all samples show negative Eu anomalies(δEu=0.2-0.6),with typical characteristics of island arc magmatism.The LH granitic rocks haveεHf(t)values of-3.7 to+8.0 and yield a TCDM age of 1.51-0.78 Ga.The data suggest that the LH granitic rocks were derived from partial melting of Proterozoic crust-related mafic to intermediate rocks with significant crust-mantle interac-tions.The results,combined with regional magmatic informa-tion,indicate that the Late Permian-early Triassic magmatism in western NQTB were controlled by subduction rollback-retraction of South Kunlun Oceanic plate under the Kun-lun-Qaidam Block.展开更多
Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the st...Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa...Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.展开更多
Argillaceous rocks are considered ideal host geomaterials for deep geological disposal of radioactive waste due to their low permeability,notable sorption capacity,low diffusion coefficient,limited natural fracturing,...Argillaceous rocks are considered ideal host geomaterials for deep geological disposal of radioactive waste due to their low permeability,notable sorption capacity,low diffusion coefficient,limited natural fracturing,and capacity for self-sealing.In line with this objective,substantial efforts have been made in the literature over the past decades to model their behavior numerically.Yet,accurately modeling the hydromechanical behavior of argillaceous rocks remains a significant challenge in geomechanics,highlighting the need for further research.Despite the wide variety of geomaterials in this class,common behavioral features are observed,such as anisotropy,structural degradation,strain localization,creep,heterogeneity,and self-sealing.This study summarizes these common features observed in laboratory and field settings and reviews the developed approaches for modeling each behavioral aspect.The goal is to establish a comprehensive framework for the practical modeling of these geomaterials,specifically aimed at applications in the geological disposal of radioactive waste.展开更多
Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analy...Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.展开更多
Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical anal...Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex.The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites.The youngest rocks cropping out in the study area are the cogenetic alkaline rocks,ranging from alkaline granite to alkaline syenite.These alkaline rocks are composed essentially of K-feldspar,alkali amphiboles(arfvedsonite),and sodic pyroxene,with accessories such as zircon,apatite,and ilmenite.Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite,thorite,zircon,ferro-columbite,xenotime,and allanite minerals.Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis(K_(2)O+Na_(2)O),large ion lithophile elements(LILEs;Ba and Rb),high field strength elements(HFSEs;Y,Zr and Nb),rare earth elements(REEs)and significantly depleted in K,Sr,P,Ti,and Eu,typically of post-collision A-type granites.Typically,the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics.The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks.The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt.The high radioactivity is essentially related to accessory minerals,such as zircon,allanite,and monazite.The alkaline granite is the most U-and Thrich rock,where radioactivity level reaches up to 14.7 ppm(181.55 Bq/kg)e U,40.6 ppm(164.84 Bq/kg)e Th,whereas in alkaline syenite radioactivity level is 8.5 ppm(104.96 Bq/kg)e U,30.2 ppm(122.61 Bq/kg)e Th.These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.展开更多
Layered rocks(LR)exhibit inherent anisotropic stiffness and strength induced by oriented rough weakness planes,along with stress induced anisotropy and friction related plastic deformation occurs during loading.Furthe...Layered rocks(LR)exhibit inherent anisotropic stiffness and strength induced by oriented rough weakness planes,along with stress induced anisotropy and friction related plastic deformation occurs during loading.Furthermore,microcracks located in intact rock matrix(IRM)of LR are also critically important for friction and damage dissipation processes.In this paper,we first present a novel multiscale friction-damage(MFD)model using a two-step Mori-Tanaka homogenization scheme,with the aim of describing the multiscale friction-damage mechanics in LR.Physically,the initiation and propagation of flaws at different scales(i.e.microcracks and weakness planes)induced damage,and the plastic deformation is closely associated with frictional sliding along these flaws.In the thermodynamics framework,the macroscopic stress-strain relations,the local driving forces respectively conjuncted with flaws propagation and plastic deformation are derived.An analytical macroscopic strength criterion is subsequently deduced,which takes into account the variation of inclination angle and confining pressure.Notably,the failure mechanisms of IRM shearing and weakness planes sliding are inherent included in the criterion.As an original contribution,a new multisurface semi-implicit return mapping algorithm(MSRM)is developed to integrate the proposed MFD model.The robustness of MSRM algorithm is assessed by numerical tests with different loading steps sizes and convergence conditions.Finally,the effectiveness of the MFD model is confirmed using data from experiments under conventional triaxial compression,all main features of mechanical behaviors of LR are well captured by the proposed model,including initial anisotropy,stress-induced anisotropy and strain hardening/softening.展开更多
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan...The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.展开更多
This paper is a synthetic use of carbon isotope composition,Rock-Eval data,organic petrology,element composition of kerogen,major and trace elements,and biomarker characteristic of the Permian Pingdiquan(P_(2)p)source...This paper is a synthetic use of carbon isotope composition,Rock-Eval data,organic petrology,element composition of kerogen,major and trace elements,and biomarker characteristic of the Permian Pingdiquan(P_(2)p)source rocks in the Wucaiwan sag,Junggar Basin,China as proxies(1)for evaluations of hydrocarbon potential,organic matter(OM)composition and thermal maturity of the OM in the source rocks,(2)for reconstruction of paleodepositional environment,and(3)for analysis of controlling factor of organic carbon accumulation.The P_(2)p Formation developed good-excellent source rocks with thermal maturity of OM ranging from low-mature to mature stages.The OM was mainly composed of C_(3)terrestrial higher plants and aquatic organisms including aerobic bacteria,green sulfur bacteria,saltwater and fresh algae,Sphagnum moss species,submerged macrophytes,Nymphaea,and aquatic pollen taxa.The proportion of terrestrial higher plants decreased and that of aquatic organisms increased from margin to center of the sag.The benthic water within reducing environment and brackishwater column were superposed by periodic/occasional fresh-water influx(e.g.,rainfall and river drain),which led to fresh-water conditions and well oxygenating in the water column during overturn process.The whole study area developed lacustrine source rocks without seawater intrusion.During periodic/occasional fresh-water influx periods with plenty of terrestrial plant inputs,the paleoredox conditions of the sag were relatively oxic in the shallow fresh-water which experienced strong oxidation and decomposition of OM,therefore were not conducive for the OM preservation.However,the overall middle primary productivity made up for this deficiency,and was the main controlling factor on the organic carbon accumulation.A suitable supply from terrestrial inputs can promote biotic paleoproductivity,and a relatively high sedimentation rate can reduce oxidation and decomposition times of OM.On the contrary,during the intervals of the fresh-water influxes,relatively reducing conditions are a more important controlling factor on the OM accumulation in the case that the decrease of the terrestrial biotic source.展开更多
The Ning-Wu Basin is an important part of the Middle-Lower Yangtze River Metallogenic Belt in eastern China.It contains well-preserved Mesozoic volcanic sequences that document significant geodynamic evolution.However...The Ning-Wu Basin is an important part of the Middle-Lower Yangtze River Metallogenic Belt in eastern China.It contains well-preserved Mesozoic volcanic sequences that document significant geodynamic evolution.However,uncertainties surrounding the ages of eruptions and the temporal relationships between the four main volcanic cycles—the Longwangshan,Dawangshan,Gushan and Niangniangshan formations—have hindered our understanding of magmatic pulsation and its connection to iron mineralisation.Here,high-precision LA-ICP-MS zircon U-Pb dating of four fresh volcanic samples(one per formation)reveals weighted mean ages of 132.3±1.0 Ma(Longwangshan;MSWD=1.3),130.4±1.6 Ma(Dawangshan;MSWD=1.3),128.1±1.9 Ma(Gushan;MSWD=2.0)and 127.2±1.1 Ma(Niangniangshan;MSWD=0.23).These dates constrain volcanic activity to the Early Cretaceous Valanginian-Hauterivian interval and show a systematic trend of increasingly younger ages spanning~8 Ma(133-125 Ma).This magmatism can be subdivided into three phases:initiation(133-132 Ma),peak activity(132-130 Ma)and cessation(128-125 Ma).The episodic volcanism correlates with the accelerating rollback of the Pacific subduction zone,which drives crustal melting and asthenospheric upwelling.Notably,these cycles supplied the thermal energy,fluids and iron-rich melts that were essential for the formation of porphyritic iron deposits in the basin.By establishing a highresolution chronostratigraphic framework,this study sheds light on the spatiotemporal evolution of the Ning-Wu Basin,elucidating the coupling between crust-mantle dynamics,volcanic cyclicity and ore-forming processes across eastern China’s metallogenic belt.展开更多
This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of...This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone.展开更多
The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.
Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechan...Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.展开更多
This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening aft...This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems.展开更多
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r...Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.展开更多
Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tari...Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tarim oilfield in the Xinjiang Uygur Autonomous Region(Xinjiang for short),China,has achieved a breakthrough in the exploration of deep hydrocarbon reservoirs at a depth of over 9000 m.The mechanical properties of deep rocks are significantly different from those of shallow rocks.In this study,triaxial compression tests were conducted on heat-treated carbonatite rocks to explore the evolution of the mechanical properties of carbonatite rocks under high confining pressure after thermal treatment.The rocks for the tests were collected from reservoirs in the Tarim oilfield,Xinjiang,China.The experiments were performed at confining pressures ranging from atmospheric to 120 MPa and temperatures ranging from25 to 500°C.The results show that the critical confining pressure of the brittle–ductile transition increases with increasing temperature.Young's modulus is negatively correlated with the temperature and positively correlated with the confining pressure.As the confining pressure increases,the failure mode of the specimens gradually transforms from shear fracture failure into“V”-type failure and finally into bulging failure(multiple shear fractures).With increasing temperature,the failure angle tends to decrease.In addition,an improved version of the Mohr-Coulomb strength criterion with a temperature-dependent power function was proposed to describe the failure strength of carbonatite rocks after exposure to high temperature and high confining pressure.The surface of the strength envelope of this criterion is temperature dependent,which could reflect the strength evolution of rock under high confining pressures after thermal treatment.Compared with other strength criteria,this criterion is more capable of replicating physical processes.展开更多
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ...It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.展开更多
The mechanical properties of stratified rocks are closely related not only to the stress state but also to the inherent structural anisotropy,which can be represented by the occurrence of bedding planes.This research ...The mechanical properties of stratified rocks are closely related not only to the stress state but also to the inherent structural anisotropy,which can be represented by the occurrence of bedding planes.This research aims to enhance the understanding of the anisotropic deformation and failure behaviors of stratified rocks by proposing a novel coupled elastoplastic-damage constitutive model.In this constitutive model,a scalar anisotropic parameter(stress-structure mixed invariant)based on the Pietruszczak–Mroz anisotropic theory is incorporated into a nonlinear yield surface,which accounts for the combined effects of the stress state and bedding structure on the anisotropic strength behaviors of stratified rocks.A damage-driven function governs the expansion and contraction of the anisotropic yield surface in the pre-peak strain hardening and post-peak strain-softening regions.The strength and deformation characteristics under multiaxial stress conditions are represented by incorporating the Lode's angle into the yield and plastic potential functions.Numerical simulations are conducted to facilitate a comparison with the conventional and true triaxial compression test data for several stratified rocks.The simulation results demonstrate good agreement with the test data,validating the effectiveness of the proposed constitutive model.This study provides theoretical and technical support for addressing engineering challenges involving stratified rocks.展开更多
The origin of magnesium and iron isotope variations in mafic–ultramafic rocks has long been debated.In particular,a substantial lack of understanding exists regarding how the variation in the Mg and Fe isotopic compo...The origin of magnesium and iron isotope variations in mafic–ultramafic rocks has long been debated.In particular,a substantial lack of understanding exists regarding how the variation in the Mg and Fe isotopic compositions of arc magmas relates to fractional crystallization.Here,we report new Mg and Fe isotopic analyses of mafic–ultramafic rocks formed by co-genetic magmatic evolution in the Eastern Kunlun orogenic belt.The ultramafic and gabbro samples present mantle-like Mg isotopic compositions,with δ^(26)Mg values ranging from−0.279‰to−0.266‰for wehrlite,−0.266‰to−0.243‰for clinopyroxenite,and−0.284‰to−0.253‰for gabbro.In contrast,the δ^(26)Mg values of the hornblende gabbro samples are significantly higher(−0.195‰to−0.176‰).These rocks have similar heavy Fe isotopic compositions,withδ56Fe values ranging from 0.020‰to 0.157‰.The high δ^(26)Mg values observed in the hornblende gabbro are interpreted as indicating a maximum of 6%olivine fractionation,whereas the slightly high δ^(26)Mg values in the clinopyroxenite are ascribed to the accumulation of titanomagnetite.The Fe isotopic signatures of these rocks are inherited from magmatic sources.A comparison of the studied rocks with other mafic-ultramafic rocks implies that partial melting of mantle wedges induced by metasomatism of marine sediment-derived melts could generate“dry”arc magmatism,which would necessitate a more comprehensive and detailed analysis in further investigations.展开更多
基金supported by the National Natural Science Foundation of China(No.41702204)the China Geology Survey(grant number DD20189614)the Basic Science Founda-tion of the Institute of Geomechanics(grant DZLXJK202004).
文摘The late Palaeozoic tectonic magmatism in the north-ern Qaidam tectonic belt(NQTB)related to the Palaeo-Tethys Ocean has become a critical issue.We performed a detailed geochronological and geochemical study of Lenghu(LH)granitic rocks in the western NQTB.LA-ICP-MS U-Pb dating of zircons from LH granitic rocks yields emplacement ages of 253±4 Ma and 264±4 Ma,indicating a two-stage emplacement process.Geochemi-cal analyses show that the LH granitic rocks have low ACNK values and are enriched in LILEs(Rb,Th,Ba)and depleted in HFSEs(Sr,Nd,and Ta).The samples are enriched in LREEs(LREE/HREE=1.5-7.3).Values of(La/Yb)N range between 0.9 and 6.5,and all samples show negative Eu anomalies(δEu=0.2-0.6),with typical characteristics of island arc magmatism.The LH granitic rocks haveεHf(t)values of-3.7 to+8.0 and yield a TCDM age of 1.51-0.78 Ga.The data suggest that the LH granitic rocks were derived from partial melting of Proterozoic crust-related mafic to intermediate rocks with significant crust-mantle interac-tions.The results,combined with regional magmatic informa-tion,indicate that the Late Permian-early Triassic magmatism in western NQTB were controlled by subduction rollback-retraction of South Kunlun Oceanic plate under the Kun-lun-Qaidam Block.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.52304101 and 52004206)the China Postdoctoral Science Foundation(Grant No.2023MD734215)。
文摘Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172159 and 42302143)the Postdoctora Fellowship Program of the China Postdoctoral Science Foundation(CPSF)(Grant No.GZB20230864).
文摘Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.
基金financial support of the French National Radioactive Waste Management Agency(Andra)is gratefully acknowledged.
文摘Argillaceous rocks are considered ideal host geomaterials for deep geological disposal of radioactive waste due to their low permeability,notable sorption capacity,low diffusion coefficient,limited natural fracturing,and capacity for self-sealing.In line with this objective,substantial efforts have been made in the literature over the past decades to model their behavior numerically.Yet,accurately modeling the hydromechanical behavior of argillaceous rocks remains a significant challenge in geomechanics,highlighting the need for further research.Despite the wide variety of geomaterials in this class,common behavioral features are observed,such as anisotropy,structural degradation,strain localization,creep,heterogeneity,and self-sealing.This study summarizes these common features observed in laboratory and field settings and reviews the developed approaches for modeling each behavioral aspect.The goal is to establish a comprehensive framework for the practical modeling of these geomaterials,specifically aimed at applications in the geological disposal of radioactive waste.
基金supported by the Korea Polar Research Institute project PE24050.
文摘Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.
文摘Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals.New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex.The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites.The youngest rocks cropping out in the study area are the cogenetic alkaline rocks,ranging from alkaline granite to alkaline syenite.These alkaline rocks are composed essentially of K-feldspar,alkali amphiboles(arfvedsonite),and sodic pyroxene,with accessories such as zircon,apatite,and ilmenite.Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite,thorite,zircon,ferro-columbite,xenotime,and allanite minerals.Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis(K_(2)O+Na_(2)O),large ion lithophile elements(LILEs;Ba and Rb),high field strength elements(HFSEs;Y,Zr and Nb),rare earth elements(REEs)and significantly depleted in K,Sr,P,Ti,and Eu,typically of post-collision A-type granites.Typically,the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics.The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks.The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt.The high radioactivity is essentially related to accessory minerals,such as zircon,allanite,and monazite.The alkaline granite is the most U-and Thrich rock,where radioactivity level reaches up to 14.7 ppm(181.55 Bq/kg)e U,40.6 ppm(164.84 Bq/kg)e Th,whereas in alkaline syenite radioactivity level is 8.5 ppm(104.96 Bq/kg)e U,30.2 ppm(122.61 Bq/kg)e Th.These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.
基金jointly supported by Science and Technology Projects in Guangzhou(Grant No.SL2023A04J01079)Zhejiang ProvincialWater Conservancy Science and Technology Plan Project(Grant No.RC2405)Thematic Five of the Second Scientific Expedition of Qinghai-Tibet Plateau(Grant No.2019QZKK0905).
文摘Layered rocks(LR)exhibit inherent anisotropic stiffness and strength induced by oriented rough weakness planes,along with stress induced anisotropy and friction related plastic deformation occurs during loading.Furthermore,microcracks located in intact rock matrix(IRM)of LR are also critically important for friction and damage dissipation processes.In this paper,we first present a novel multiscale friction-damage(MFD)model using a two-step Mori-Tanaka homogenization scheme,with the aim of describing the multiscale friction-damage mechanics in LR.Physically,the initiation and propagation of flaws at different scales(i.e.microcracks and weakness planes)induced damage,and the plastic deformation is closely associated with frictional sliding along these flaws.In the thermodynamics framework,the macroscopic stress-strain relations,the local driving forces respectively conjuncted with flaws propagation and plastic deformation are derived.An analytical macroscopic strength criterion is subsequently deduced,which takes into account the variation of inclination angle and confining pressure.Notably,the failure mechanisms of IRM shearing and weakness planes sliding are inherent included in the criterion.As an original contribution,a new multisurface semi-implicit return mapping algorithm(MSRM)is developed to integrate the proposed MFD model.The robustness of MSRM algorithm is assessed by numerical tests with different loading steps sizes and convergence conditions.Finally,the effectiveness of the MFD model is confirmed using data from experiments under conventional triaxial compression,all main features of mechanical behaviors of LR are well captured by the proposed model,including initial anisotropy,stress-induced anisotropy and strain hardening/softening.
基金supported by the National Natural Science Foundation of China(Grant No.11802332)the China Scholarship Council(Grant No.202206435003)the Fundamental Research Funds for the Central Universities(Grant No.2024ZKPYLJ03).
文摘The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42202154)the Science Foundation of China University of Petroleum,Beijing(No.ZX20220074)。
文摘This paper is a synthetic use of carbon isotope composition,Rock-Eval data,organic petrology,element composition of kerogen,major and trace elements,and biomarker characteristic of the Permian Pingdiquan(P_(2)p)source rocks in the Wucaiwan sag,Junggar Basin,China as proxies(1)for evaluations of hydrocarbon potential,organic matter(OM)composition and thermal maturity of the OM in the source rocks,(2)for reconstruction of paleodepositional environment,and(3)for analysis of controlling factor of organic carbon accumulation.The P_(2)p Formation developed good-excellent source rocks with thermal maturity of OM ranging from low-mature to mature stages.The OM was mainly composed of C_(3)terrestrial higher plants and aquatic organisms including aerobic bacteria,green sulfur bacteria,saltwater and fresh algae,Sphagnum moss species,submerged macrophytes,Nymphaea,and aquatic pollen taxa.The proportion of terrestrial higher plants decreased and that of aquatic organisms increased from margin to center of the sag.The benthic water within reducing environment and brackishwater column were superposed by periodic/occasional fresh-water influx(e.g.,rainfall and river drain),which led to fresh-water conditions and well oxygenating in the water column during overturn process.The whole study area developed lacustrine source rocks without seawater intrusion.During periodic/occasional fresh-water influx periods with plenty of terrestrial plant inputs,the paleoredox conditions of the sag were relatively oxic in the shallow fresh-water which experienced strong oxidation and decomposition of OM,therefore were not conducive for the OM preservation.However,the overall middle primary productivity made up for this deficiency,and was the main controlling factor on the organic carbon accumulation.A suitable supply from terrestrial inputs can promote biotic paleoproductivity,and a relatively high sedimentation rate can reduce oxidation and decomposition times of OM.On the contrary,during the intervals of the fresh-water influxes,relatively reducing conditions are a more important controlling factor on the OM accumulation in the case that the decrease of the terrestrial biotic source.
基金supported by The Special Funds for Natural Resource Development in Jiangsu Province(2200113-35)The Central Financial Geological Survey Project of the China Geological Survey(DD20230800702).
文摘The Ning-Wu Basin is an important part of the Middle-Lower Yangtze River Metallogenic Belt in eastern China.It contains well-preserved Mesozoic volcanic sequences that document significant geodynamic evolution.However,uncertainties surrounding the ages of eruptions and the temporal relationships between the four main volcanic cycles—the Longwangshan,Dawangshan,Gushan and Niangniangshan formations—have hindered our understanding of magmatic pulsation and its connection to iron mineralisation.Here,high-precision LA-ICP-MS zircon U-Pb dating of four fresh volcanic samples(one per formation)reveals weighted mean ages of 132.3±1.0 Ma(Longwangshan;MSWD=1.3),130.4±1.6 Ma(Dawangshan;MSWD=1.3),128.1±1.9 Ma(Gushan;MSWD=2.0)and 127.2±1.1 Ma(Niangniangshan;MSWD=0.23).These dates constrain volcanic activity to the Early Cretaceous Valanginian-Hauterivian interval and show a systematic trend of increasingly younger ages spanning~8 Ma(133-125 Ma).This magmatism can be subdivided into three phases:initiation(133-132 Ma),peak activity(132-130 Ma)and cessation(128-125 Ma).The episodic volcanism correlates with the accelerating rollback of the Pacific subduction zone,which drives crustal melting and asthenospheric upwelling.Notably,these cycles supplied the thermal energy,fluids and iron-rich melts that were essential for the formation of porphyritic iron deposits in the basin.By establishing a highresolution chronostratigraphic framework,this study sheds light on the spatiotemporal evolution of the Ning-Wu Basin,elucidating the coupling between crust-mantle dynamics,volcanic cyclicity and ore-forming processes across eastern China’s metallogenic belt.
基金supported by the French National Agency for radioactive waste management(ANDRA).
文摘This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste.The fundamental background of thermo-poro-elastoplasticity theory is first summarized.The emphasis is put on the effect of pore fluid pressure on plastic deformation.A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock.Based on linear and nonlinear homogenization techniques,the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength.The initial anisotropy and time-dependent deformation are also taken into account.The induced cracking process is described by using a non-local damage model.A specific hybrid formulation is proposed,able to conveniently capture tensile,shear and mixed cracks.In particular,the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account.The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale.In the last part,an in situ heating experiment is analyzed by using the proposed model.Numerical results are compared with experimental data and field measurements in terms of temperature variation,pore fluid pressure change and induced damaged zone.
文摘The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.
基金supported by financial support from the National Natural Science Foundation of China(Grant Nos.52309122 and U2340229)the Innovation Team of Changjiang River Scientific Research Institute(Grant No.CKSF2024329/YT).
文摘Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.
基金funded by the European Union's Horizon 2020 research and innovation programme under a grant agreement (Grant No.847593)partially supported by the Fundamental Research Funds for the Central Universities (Grant No.22120240029).
文摘This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems.
基金Projects(52378392,52478390)supported by the National Natural Science Foundation of ChinaProject(2024J08213)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(00387088)supported by the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,ChinaProject(GY-Z23072)supported by the Scientific Research Foundation of Fujian University of Technology,China。
文摘Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.
基金National Natural Science Foundation of China,Grant/Award Number:52034010。
文摘Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tarim oilfield in the Xinjiang Uygur Autonomous Region(Xinjiang for short),China,has achieved a breakthrough in the exploration of deep hydrocarbon reservoirs at a depth of over 9000 m.The mechanical properties of deep rocks are significantly different from those of shallow rocks.In this study,triaxial compression tests were conducted on heat-treated carbonatite rocks to explore the evolution of the mechanical properties of carbonatite rocks under high confining pressure after thermal treatment.The rocks for the tests were collected from reservoirs in the Tarim oilfield,Xinjiang,China.The experiments were performed at confining pressures ranging from atmospheric to 120 MPa and temperatures ranging from25 to 500°C.The results show that the critical confining pressure of the brittle–ductile transition increases with increasing temperature.Young's modulus is negatively correlated with the temperature and positively correlated with the confining pressure.As the confining pressure increases,the failure mode of the specimens gradually transforms from shear fracture failure into“V”-type failure and finally into bulging failure(multiple shear fractures).With increasing temperature,the failure angle tends to decrease.In addition,an improved version of the Mohr-Coulomb strength criterion with a temperature-dependent power function was proposed to describe the failure strength of carbonatite rocks after exposure to high temperature and high confining pressure.The surface of the strength envelope of this criterion is temperature dependent,which could reflect the strength evolution of rock under high confining pressures after thermal treatment.Compared with other strength criteria,this criterion is more capable of replicating physical processes.
基金financially supported by National Natural Science Foundation of China(No.52304136)Young Talent of Lifting Engineering for Science and Technology in Shandong,China(No.SDAST2024QTA060)Key Project of Research and Development in Liaocheng(No.2023YD02)。
文摘It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52109143 and 12062026)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(Grant No.IWHRSKL-KF202305).
文摘The mechanical properties of stratified rocks are closely related not only to the stress state but also to the inherent structural anisotropy,which can be represented by the occurrence of bedding planes.This research aims to enhance the understanding of the anisotropic deformation and failure behaviors of stratified rocks by proposing a novel coupled elastoplastic-damage constitutive model.In this constitutive model,a scalar anisotropic parameter(stress-structure mixed invariant)based on the Pietruszczak–Mroz anisotropic theory is incorporated into a nonlinear yield surface,which accounts for the combined effects of the stress state and bedding structure on the anisotropic strength behaviors of stratified rocks.A damage-driven function governs the expansion and contraction of the anisotropic yield surface in the pre-peak strain hardening and post-peak strain-softening regions.The strength and deformation characteristics under multiaxial stress conditions are represented by incorporating the Lode's angle into the yield and plastic potential functions.Numerical simulations are conducted to facilitate a comparison with the conventional and true triaxial compression test data for several stratified rocks.The simulation results demonstrate good agreement with the test data,validating the effectiveness of the proposed constitutive model.This study provides theoretical and technical support for addressing engineering challenges involving stratified rocks.
基金This research was financially co-supported by the National Natural Science Foundation of China(Grant Nos.42121002 and 91755207).
文摘The origin of magnesium and iron isotope variations in mafic–ultramafic rocks has long been debated.In particular,a substantial lack of understanding exists regarding how the variation in the Mg and Fe isotopic compositions of arc magmas relates to fractional crystallization.Here,we report new Mg and Fe isotopic analyses of mafic–ultramafic rocks formed by co-genetic magmatic evolution in the Eastern Kunlun orogenic belt.The ultramafic and gabbro samples present mantle-like Mg isotopic compositions,with δ^(26)Mg values ranging from−0.279‰to−0.266‰for wehrlite,−0.266‰to−0.243‰for clinopyroxenite,and−0.284‰to−0.253‰for gabbro.In contrast,the δ^(26)Mg values of the hornblende gabbro samples are significantly higher(−0.195‰to−0.176‰).These rocks have similar heavy Fe isotopic compositions,withδ56Fe values ranging from 0.020‰to 0.157‰.The high δ^(26)Mg values observed in the hornblende gabbro are interpreted as indicating a maximum of 6%olivine fractionation,whereas the slightly high δ^(26)Mg values in the clinopyroxenite are ascribed to the accumulation of titanomagnetite.The Fe isotopic signatures of these rocks are inherited from magmatic sources.A comparison of the studied rocks with other mafic-ultramafic rocks implies that partial melting of mantle wedges induced by metasomatism of marine sediment-derived melts could generate“dry”arc magmatism,which would necessitate a more comprehensive and detailed analysis in further investigations.