Axial chain rockbursts(ACRs)repeatedly occur in deep tunnels during drilling and blasting methodology(D&B)within locked-in stress zones,severely hindering construction progress.In extremely cases,ACRs can persist ...Axial chain rockbursts(ACRs)repeatedly occur in deep tunnels during drilling and blasting methodology(D&B)within locked-in stress zones,severely hindering construction progress.In extremely cases,ACRs can persist for 7−10 d and affect areas exceeding 20 m along tunnel axis.Through integrated geological investigations and microseismic(MS)monitoring,the geological characteristics,MS activity patterns,and formation mechanisms of ACRs were analyzed.In tectonically active regions,locked-in stress zones arise from interactions between multiple structural planes.Blasting dynamic disturbances during tunnel excavation in these zones trigger early slippage along structural planes and fractures in the surrounding rock,with MS events developing ahead of the working face.High-energy MS events dominate during the development and occurrence stages of ACRs,extending 20−30 m(3−4 tunnel diameters)ahead of the working face.Following the ACRs,low-energy MS events primarily occur behind the working face.Tensile fracturing is the predominant failure mode during ACRs.Shear and mixed fractures primarily occur within the ACRs zone during the intra-ACR phase.Monitoring MS event locations ahead of the working face provides a reliable approach for prewarning potential ACR-prone zones.展开更多
The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in so...The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts.展开更多
In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events cau...In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events caused by fault slip and their potential effects on rockbursts.Through Bayesian inversion,it is determined that the sources near fault FQ14 have a significant shear component.Additionally,we analyzed the stress and displacement fields of high-energy events,along with the hypocenter distribution of aftershocks,which aided in identifying the slip direction of the critically stressed fault FQ14.We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes.The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions,thereby enhancing the applicability of our findings.Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.展开更多
Rockbursts are sudden and violent rock failures that can lead to huge production and equipment losses,injury or death of mining workers.Buckling has been regarded as one of the key mechanisms of rockbursts,which are o...Rockbursts are sudden and violent rock failures that can lead to huge production and equipment losses,injury or death of mining workers.Buckling has been regarded as one of the key mechanisms of rockbursts,which are often induced by dynamic loads from mining excavations,such as drilling and blasting in underground mining.The paper attempts to investigate the dynamic buckling mechanism of pillar rockbursts in underground mining,by considering rockbursts as a dynamic stability problem of underground rock structures.The results include:(1)A new explanation of the“sudden and violent”phenomenon of rockbursts,characterized by exponential growth of the amplitudes of transverse displacement responses,even in the presence of rock damping;(2)Identification of the critical role in inducing rockbursts of dynamic loads that bear frequencies approximately double the natural pillar frequency;(3)The greater influence on rockburst occurrence of the amplitude of dynamic component relative to the static component of loads;and(4)Quantification of the relative effects of stress waveform of dynamic loads on pillar rockbursts,which are in decreasing order if other parameters remain constant:rectangular,sinusoidal,and exponential waveforms.Application examples are provided and limitations of the approach are discussed.This research is motivated by the on-going and ubiquitous occurrence of rockbursts in underground excavations all around the world.In contrast to conventional methods that use rock specimens or rock materials to study rockbursts,this investigation emphasizes the structural effects on rockbursts,which has potential applications in hard rock mining engineering.展开更多
To better understand the mechanical properties of marble at Jinping II hydropower station, this paper examines the changes of brittle rocks in excavation damaged zones(EDZs) before and after excavation of tunnel with ...To better understand the mechanical properties of marble at Jinping II hydropower station, this paper examines the changes of brittle rocks in excavation damaged zones(EDZs) before and after excavation of tunnel with the tunnel boring machine(TBM). The paper attempts to employ the acoustic emission(AE) to study the AE characteristics and distribution of rockburst before and after TBM-excavated tunnel. It is known that the headrace tunnel #2, excavated by the drill-and-blast(D&B) method, is ahead of the headrace tunnel #3 that is excavated by TBM method. The experimental sub-tunnel #2–1, about 2000 m in depth and 13 m in diameter, between the two tunnels is scheduled. In the experimental sub-tunnel #2–1, a large number of experimental boreholes are arranged, and AE sensors are installed within 10 m apart from the wall of the headrace tunnel #3. By tracking the microseismic signals in rocks, the location, frequency, quantity, scope and intensity of the microseismic signals are basically identifed. It is observed that the AE signals mainly occur within 5 m around the rock wall, basically lasting for one day before tunnel excavation and a week after excavation. Monitoring results indicate that the rockburst signals are closely related to rock stress adjustment. The rock structure has a rapid self-adjustment capacity before and after a certain period of time during tunneling. The variations of rock stresses would last for a long time before reaching a fnal steady state. Based on this, the site-specifc support parameters for the deep tunnels can be accordingly optimized.展开更多
Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The ...Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The case study describes a recorded heavy rockburst in the Czech part of the Upper Silesian Coal Basin, which occurred during longwall mining near the protective pillar. The artificial dividing of geological blocks and creation of mining protective pillars(shaft pillars, crosscut pillars etc.) is a dangerous task in light of rockbursts occurring mainly due to overstressing of remaining pillars. A simple model of this situation is presented. Natural and mining conditions are analysed and presented in detail as well as registered seismicity during longwall mining in the area. Recorded rockbursts in the area of interest are described and their causes discussed. Many rockbursts near protective pillars were recorded in this mining region. Methodical instructions for rockburst prevention in proximity of protective pillars as well as for gates driving were devised based on the evaluation of rockburst causes. The paper presents these principles for prevention.展开更多
The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were ...The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.展开更多
As the depth of excavation increases,rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering.This has forced researche...As the depth of excavation increases,rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering.This has forced researchers worldwide to identify different methods to investigate rockburst-related problems.However,some problems,such as the mechanisms and the prediction of rockbursts,continue to be studied because rockburst is a very complicated phenomenon influenced by the uncertainty and complexity in geological conditions,in situ stresses,induced stresses,etc.Numerical modeling is a widely used method for investigating rockbursts.To date,great achievements have been made owing to the rapid development of information technology(IT)and computer equipment.Hence,it is necessary and meaningful to conduct a review of the current state of the studies for rockburst numerical modeling.In this paper,the categories and the origin of different numerical approaches employed in modeling rockbursts are reviewed and the current usage of various numerical modeling approaches is investigated by a literature research.Later,a state-of-the-art review is implemented to investigate the application of numerical modeling in the mechanism study,and prediction and prevention of rockbursts.The main achievements and problems are highlighted.Finally,this paper discusses the limitations and the future research of numerical modeling for rockbursts.An approach is proposed to provide researchers with a systematic and reasonable numerical modeling framework.展开更多
This paper focuses on the evolution processes of different types of rockbursts occurring in deep tunnels. A series of laboratory tests and in-situ monitoring in deep tunnels excavated by tunnel boring machine (TBM) ...This paper focuses on the evolution processes of different types of rockbursts occurring in deep tunnels. A series of laboratory tests and in-situ monitoring in deep tunnels excavated by tunnel boring machine (TBM) and drill-and-blast (D&B) method have been conducted to understand the mechanisms and processes of the evolution of different types of rockbursts, including strain rockburst, strain-structure slip rockburst, immediate rockburst and time-delayed rockburst. Three different risk assessment methods are proposed to evaluate the intensity and potential failure depth of rockbursts. These methods can be applied before excavation and the results can be updated according to the real-time information during excavation. Two micro-seismicity based real-time warning systems have been established for predicting various intensities ofrockbursts, such as slight, moderate, intensive and extremely intensive rockbursts. Meanwhile, the probability and intensity of the rockburst are also given. The strategy for excavation and support design has been suggested for various intensities of rockbursts before excavation. The strategy for dynamic control of the rockburst evolution process is also proposed according to the monitoring results. The methodology has been successfully applied to rockburst risk reduction for deep tunnels at Jinping II hydropower project. The results have illustrated the applicability of the proposed methodology and techniques concerning rockbursts.展开更多
Rockburst;Rockburst damage;Yielding rockbolt;Numerical modeling;UDEC;Underground miningThe assessment of yielding rockbolt performance during rockbursts with actual seismic loading is essential for rock-burst supporti...Rockburst;Rockburst damage;Yielding rockbolt;Numerical modeling;UDEC;Underground miningThe assessment of yielding rockbolt performance during rockbursts with actual seismic loading is essential for rock-burst supporting designs.In this paper,two types of yielding rockbolts(D-bolt and Roofex)and the fully resin-grouted rebar bolt are modeled via the"rockbolt"element in universal distinct element code(UDEC)after an exact calibration procedure.A two-dimensional(2D)model of a deep tunnel is built to fully evaluate the performance(e.g.,capacity of energy-absorption and control of rock damage)of yielding and traditional rockbolts based on the simulated rockbursts.The influence of different rockburst magnitudes is also studied.The results suggest that the D-bolt can effectively control and mitigate rockburst damage during a weak rockburst because of its high strength and deformation capacity.The Roofex is too"soft"or"smooth"to limit the movement of ejected rocks and restrain the large deformation,although it has an excellent deformation capacity.The resin-grouted rebar bolt can maintain a high axial force level during rockbursts but is easy to break during dynamic shocks,which fails to control rapid rock bulking or ejection.Three types of rockbolts cannot control the large deformation and mitigate rockburst damage effectively during violent rockbursts.The rockburst damage severity can be significantly reduced by additional support with cable bolts.This study highlights the effectiveness of numerical modeling methods in assessing the complex performance of yielding rockbolts during rockbursts,which can provide some references to improve and optimize the design of rock supporting in burst-prone grounds.展开更多
This paper attempts to present the findings involving rockbursts classification, rockburst failure criteria, and related control measures. Experimental investigations were performed using the strainburst testing machi...This paper attempts to present the findings involving rockbursts classification, rockburst failure criteria, and related control measures. Experimental investigations were performed using the strainburst testing machine and impact-induced rockburst testing machine. According to the stress paths and experimental methods, rockbursts were classified into two major groups, i.e. the strainbursts and impact-induced bursts. The mechanisms and criteria of rockburst obtained from experimental investigations were discussed. Then, the developments of constant-resistance and large-deformation bolt (CRLDB), which can adapt itself to the external loading at a constant resistance by elongating continually, were introduced. The deformation energy Of country rocks with large deformation can be absorbed by CRLDBs. Finally, the principles and the experimental results for control and prevention of rockburst using the CRLDBs were presented.展开更多
Rockburst,characterized by a sudden and violent rock failure resulting in the expulsion of rock from its sur roundings,poses a significant threat to the safety of tunnel excavation operations,often causing property da...Rockburst,characterized by a sudden and violent rock failure resulting in the expulsion of rock from its sur roundings,poses a significant threat to the safety of tunnel excavation operations,often causing property damage and injuries to workers.Buckling has been identified as a critical mechanism leading to rockbursts.Seismic events or blasting can induce rockbursts when stress waves reach the free surface of underground openings.This paper aims to investigate the induced mechanism of tunnel rockbursts based on the dynamic buckling of rectangular rock plates.As a rock stress wave approaches a tunnel sidewall,it decomposes into perpendicular and parallel component loads relative to the free surface.The perpendicular stress reflects off the free surface,forming a rectangular thin plate of rock.The parallel stress triggers parametric resonance in the plate,resulting in a tunnel rockburst.An illustrative example of tunnel sidewall rockbursts in Jinping Ⅱ hydropower project,China,is provided to study the effects of stress wave amplitude and frequency,static and dynamic components,rock damping,multiple frequencies,and vibration modes.Based on this mechanism analysis,recommendations are proposed to mitigate the risk of tunnel rockbursts.The research offers a plausible explanation for the heightened frequency and severity of rockbursts in Tunnel Boring Machine tunnels compared to New Austrian Tunneling Method tunnels at the Jinping Ⅱ project for the first time.展开更多
Time-delayed rockbursts abruptly release huge energy,characterized by suddenness,randomness,and destructiveness,leading to substantial damage to both lives and property.This study explores the occurrence of time-delay...Time-delayed rockbursts abruptly release huge energy,characterized by suddenness,randomness,and destructiveness,leading to substantial damage to both lives and property.This study explores the occurrence of time-delayed rockbursts through statistical analysis of case studies in deep tunnels,including an extremely intensive time-delayed rockburst case.Through on-site surveys,blasting vibration tests,numerical calculations,and true triaxial compression experiments,this study analyzes the main factors and prevention and control strategies of time-delayed rockbursts based on an extremely intense time-delayed rockburst case.The results show that most time-delayed rockbursts are of high intensity.Paramount factors influencing their occurrence consider in-situ stresses,structural planes,and dynamic disturbances.Both high in-situ stress and its gradients provide the necessary conditions for such events,while the presence of abundant structural planes and frequent dynamic disturbances largely increase the risk of rockburst potential.To mitigate the risk of time-delayed rockbursts,energy control strategies are essential,incorporating measures such as energy reduction,prerelease,energy transformation,and energy absorption.Additionally,wave-absorbed support technology can reduce the amplitude and frequency of dynamic disturbances,further decreasing the likelihood of a rockburst occurring.Time-delayed rockburst occurrence requires long disturbance durations,compared to immediate rockbursts.Long-term,continuous,and multiple dynamic events will cause significant damage accumulation and formation of microcracks in hard rock.This study offers insights into the mechanisms underpinning time-delayed rockbursts and proposes prevention strategies for their control.展开更多
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during ...A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings.展开更多
To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxi...To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.展开更多
To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compress...To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compression and uniaxial loading–unloading tests were conducted under five saturation levels.The effect of saturation on the mechanical properties and elastic energy density was analyzed,and a method for obtaining peak energy density was proposed.The effect of saturation on the energy evolution was examined,and the energy mechanism of water in preventing rockburst was revealed.The results indicate that an increase in saturation of red sandstone decreases the input energy density,elastic energy density,dissipated energy density,peak strength and peak strain;the compaction phase of the stress–strain curve becomes shorter;the failure mode transitions from X-conjugate oblique shear to single oblique shear;the variation in the debris ejection trajectory is as follows:radiation→X-ray→oblique upward parabola→horizontal parabola→oblique downward parabola;the degree of failure intensity and fragmentation is decreased gradually.Elastic energy density is interconnected with both saturation and stress but independent of the loading path.Saturation exhibits a dual effect on the energy storage property,i.e.,increasing saturation increases the energy storage efficiency and reduces the energy storage capacity.The ratio of peak elastic energy density to peak input energy density remains constant irrespective of saturation levels.Water prevents rockburst by decreasing the energy storage capacity of surrounding rock,alleviating the stress of surrounding rock to reduce energy storage,and elevating the energy release threshold of high-energy surrounding rock.The findings of this study contribute to understanding the effect of water on rock failure from an energy perspective,as well as provide theoretical guidance for rockburst prevention by water in deep tunnels.展开更多
The formation of a pressure relief zone is crucial for rockbust prevention during drilling pressure relief.This study investi-gates the mechanical behavior of high-stress rock under real-time drilling conditions and e...The formation of a pressure relief zone is crucial for rockbust prevention during drilling pressure relief.This study investi-gates the mechanical behavior of high-stress rock under real-time drilling conditions and elucidates the mechanism behind the creation of the pressure relief zone.Utilizing the independently developed SG4500 drilling rig,we conducted a theoreti-cal analysis of the forces acting on the drill bit.The analysis showed that cutting depth is directly proportional to real-time drilling speed,while tangential and normal forces are influenced by drilling diameter.Uniaxial compression tests on red sandstone specimens under high-stress real-time drilling conditions examined the impacts of different drilling speeds(800,400,100 r/min)and diameters(6,8,10,12 mm)on rock mechanical behavior,rockburst characteristics,crack evolution,and peak elastic strain energy.The results indicate that decreasing drilling speed and increasing drilling diameter weaken rock mechanical behavior,including peak strength,Young's modulus,rockburst characteristics,and peak elastic strain energy.Crack evolution analysis reveals that smaller drilling diameters and higher drilling speeds promote the development of far-field cracks,while larger drilling diameters and lower drilling speeds lead to crack formation around the borehole,and significantly affecting rock failure mechanisms.Theoretical analysis further confirms the correlation between crack evolution and stress distribution surrounding the drilling.Under vertical stress,the cracks near the borehole formed during real-time drilling are mainly influenced by tangential compressive and tensile stresses.Overall,this study provides a new perspective on understanding the mechanisms of drilling pressure relief for rockburst prevention.展开更多
The principal stresses will increase or decrease during mining,leading to variations in surrounding rock strength and subsequently an influence on the risk of rockbursts.To address this issue,this study conducted theo...The principal stresses will increase or decrease during mining,leading to variations in surrounding rock strength and subsequently an influence on the risk of rockbursts.To address this issue,this study conducted theoretical analysis,numerical simulation,and field monitoring.A rockburst risk analysis method that integrates dynamic changes in the stress and strength of surrounding rock was proposed and verified in the field.The dynamic changes in maximum(σ_(1))and minimum(σ_(3))principal stresses are represented by the σ_(1) and σ_(3) differentials,respectively.The difference in principal stress differential(DPSD),defined as the difference between σ_(1) and σ_(3),was introduced as a novel indicator for rockburst risk analysis.The findings of this study demonstrate a positive correlation between increases in DPSD and heightened risks of rockbursts,as evidenced by an increase in both the frequency of rockbursts and the occurrence of large-energy microseismic events.Conversely,a decrease in DPSD is associated with a reduction in risk.Specifically,in the W1123 panel of a coal mine susceptible to rockbursts,areas exhibiting higher DPSD values experienced more frequent and severe rockbursts.The DPSD-based analysis aligned well with the observed rockburst occurrences.Subsequent optimization of rockburst prevention measures in areas with elevated DPSD led to a reduction in DPSD.Following these adjustments,the W1123 panel predominantly experienced low-energy microseismic events,with a significant decrease in large-energy microseismic events and no further rockbursts.The DPSD analysis is a valuable tool for evaluating rockburst risk and aiding in prevention,which is of great significance for disaster prevention.展开更多
Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)prec...Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)precursors in different rock types remains poorly understood.This study investigates the AE characteristics and early warning times of rockburst in slate and mica-schist under four LRs(0.05,0.15,0.25,and 0.5 MPa/s)using true triaxial unloading tests.The micro-crack state of the samples was evaluated using entropy,while critical slowing down(CSD)theory was applied to interpret AE precursors.The results reveal that as the LR increases,the rockburst stress of both rocks initially rises and then declines,with mica-schist exhibiting more severe damage and a higher dominance of tensile cracks.Notably,identifying rockburst precursors in mica-schist proved more challenging compared to slate.Among the methods tested,AE amplitude variance outperformed entropy in precursor identification.Additionally,the rockburst early warning time was found to be negatively correlated with the LR,with mica-schist consistently showing shorter warning times than slate.The CSD-derived precursor,due to its enhanced sensitivity,is recommended for early warning systems.These findings provide new insights into the role of LRs in rockburst dynamics and offer practical guidance for improving precursor identification and disaster mitigation strategies.展开更多
基金Projects(52222810,52178383)supported by the National Natural Science Foundation of China。
文摘Axial chain rockbursts(ACRs)repeatedly occur in deep tunnels during drilling and blasting methodology(D&B)within locked-in stress zones,severely hindering construction progress.In extremely cases,ACRs can persist for 7−10 d and affect areas exceeding 20 m along tunnel axis.Through integrated geological investigations and microseismic(MS)monitoring,the geological characteristics,MS activity patterns,and formation mechanisms of ACRs were analyzed.In tectonically active regions,locked-in stress zones arise from interactions between multiple structural planes.Blasting dynamic disturbances during tunnel excavation in these zones trigger early slippage along structural planes and fractures in the surrounding rock,with MS events developing ahead of the working face.High-energy MS events dominate during the development and occurrence stages of ACRs,extending 20−30 m(3−4 tunnel diameters)ahead of the working face.Following the ACRs,low-energy MS events primarily occur behind the working face.Tensile fracturing is the predominant failure mode during ACRs.Shear and mixed fractures primarily occur within the ACRs zone during the intra-ACR phase.Monitoring MS event locations ahead of the working face provides a reliable approach for prewarning potential ACR-prone zones.
基金funding support from the National Natural Science Foundation of China(Grant Nos.42177136 and 52309126).
文摘The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts.
基金the Graduate Innovation Program of China University of Mining and Technology,the Fundamental Research Funds for the Central Universities(Grant No.2023WLKXJ017)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_2776)the Shandong Energy Group(Grant No.SNKJ2022BJ03-R28)。
文摘In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events caused by fault slip and their potential effects on rockbursts.Through Bayesian inversion,it is determined that the sources near fault FQ14 have a significant shear component.Additionally,we analyzed the stress and displacement fields of high-energy events,along with the hypocenter distribution of aftershocks,which aided in identifying the slip direction of the critically stressed fault FQ14.We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes.The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions,thereby enhancing the applicability of our findings.Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.
基金supported,in part,by the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘Rockbursts are sudden and violent rock failures that can lead to huge production and equipment losses,injury or death of mining workers.Buckling has been regarded as one of the key mechanisms of rockbursts,which are often induced by dynamic loads from mining excavations,such as drilling and blasting in underground mining.The paper attempts to investigate the dynamic buckling mechanism of pillar rockbursts in underground mining,by considering rockbursts as a dynamic stability problem of underground rock structures.The results include:(1)A new explanation of the“sudden and violent”phenomenon of rockbursts,characterized by exponential growth of the amplitudes of transverse displacement responses,even in the presence of rock damping;(2)Identification of the critical role in inducing rockbursts of dynamic loads that bear frequencies approximately double the natural pillar frequency;(3)The greater influence on rockburst occurrence of the amplitude of dynamic component relative to the static component of loads;and(4)Quantification of the relative effects of stress waveform of dynamic loads on pillar rockbursts,which are in decreasing order if other parameters remain constant:rectangular,sinusoidal,and exponential waveforms.Application examples are provided and limitations of the approach are discussed.This research is motivated by the on-going and ubiquitous occurrence of rockbursts in underground excavations all around the world.In contrast to conventional methods that use rock specimens or rock materials to study rockbursts,this investigation emphasizes the structural effects on rockbursts,which has potential applications in hard rock mining engineering.
文摘To better understand the mechanical properties of marble at Jinping II hydropower station, this paper examines the changes of brittle rocks in excavation damaged zones(EDZs) before and after excavation of tunnel with the tunnel boring machine(TBM). The paper attempts to employ the acoustic emission(AE) to study the AE characteristics and distribution of rockburst before and after TBM-excavated tunnel. It is known that the headrace tunnel #2, excavated by the drill-and-blast(D&B) method, is ahead of the headrace tunnel #3 that is excavated by TBM method. The experimental sub-tunnel #2–1, about 2000 m in depth and 13 m in diameter, between the two tunnels is scheduled. In the experimental sub-tunnel #2–1, a large number of experimental boreholes are arranged, and AE sensors are installed within 10 m apart from the wall of the headrace tunnel #3. By tracking the microseismic signals in rocks, the location, frequency, quantity, scope and intensity of the microseismic signals are basically identifed. It is observed that the AE signals mainly occur within 5 m around the rock wall, basically lasting for one day before tunnel excavation and a week after excavation. Monitoring results indicate that the rockburst signals are closely related to rock stress adjustment. The rock structure has a rapid self-adjustment capacity before and after a certain period of time during tunneling. The variations of rock stresses would last for a long time before reaching a fnal steady state. Based on this, the site-specifc support parameters for the deep tunnels can be accordingly optimized.
基金the project of the Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy Use–Sustainability Programme of Czech Republic (No.LO1406)supported by a project for the long-term conceptual development of research organisations (No.RVO:68145535)
文摘Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The case study describes a recorded heavy rockburst in the Czech part of the Upper Silesian Coal Basin, which occurred during longwall mining near the protective pillar. The artificial dividing of geological blocks and creation of mining protective pillars(shaft pillars, crosscut pillars etc.) is a dangerous task in light of rockbursts occurring mainly due to overstressing of remaining pillars. A simple model of this situation is presented. Natural and mining conditions are analysed and presented in detail as well as registered seismicity during longwall mining in the area. Recorded rockbursts in the area of interest are described and their causes discussed. Many rockbursts near protective pillars were recorded in this mining region. Methodical instructions for rockburst prevention in proximity of protective pillars as well as for gates driving were devised based on the evaluation of rockburst causes. The paper presents these principles for prevention.
基金Project(2010CB732004) supported by the National Basic Research Program of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.
基金The authors gratefully acknowledge financial support from the China Scholarship Council(Grant No.201808370185).
文摘As the depth of excavation increases,rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering.This has forced researchers worldwide to identify different methods to investigate rockburst-related problems.However,some problems,such as the mechanisms and the prediction of rockbursts,continue to be studied because rockburst is a very complicated phenomenon influenced by the uncertainty and complexity in geological conditions,in situ stresses,induced stresses,etc.Numerical modeling is a widely used method for investigating rockbursts.To date,great achievements have been made owing to the rapid development of information technology(IT)and computer equipment.Hence,it is necessary and meaningful to conduct a review of the current state of the studies for rockburst numerical modeling.In this paper,the categories and the origin of different numerical approaches employed in modeling rockbursts are reviewed and the current usage of various numerical modeling approaches is investigated by a literature research.Later,a state-of-the-art review is implemented to investigate the application of numerical modeling in the mechanism study,and prediction and prevention of rockbursts.The main achievements and problems are highlighted.Finally,this paper discusses the limitations and the future research of numerical modeling for rockbursts.An approach is proposed to provide researchers with a systematic and reasonable numerical modeling framework.
基金supported by China National Basic Research Project under Grant No. 2010CB732006Key Projects of Chinese Academy of Sciences under Grant No. KZZD-EW-05-03
文摘This paper focuses on the evolution processes of different types of rockbursts occurring in deep tunnels. A series of laboratory tests and in-situ monitoring in deep tunnels excavated by tunnel boring machine (TBM) and drill-and-blast (D&B) method have been conducted to understand the mechanisms and processes of the evolution of different types of rockbursts, including strain rockburst, strain-structure slip rockburst, immediate rockburst and time-delayed rockburst. Three different risk assessment methods are proposed to evaluate the intensity and potential failure depth of rockbursts. These methods can be applied before excavation and the results can be updated according to the real-time information during excavation. Two micro-seismicity based real-time warning systems have been established for predicting various intensities ofrockbursts, such as slight, moderate, intensive and extremely intensive rockbursts. Meanwhile, the probability and intensity of the rockburst are also given. The strategy for excavation and support design has been suggested for various intensities of rockbursts before excavation. The strategy for dynamic control of the rockburst evolution process is also proposed according to the monitoring results. The methodology has been successfully applied to rockburst risk reduction for deep tunnels at Jinping II hydropower project. The results have illustrated the applicability of the proposed methodology and techniques concerning rockbursts.
基金Support from China Scholarship Council(funding number:201808370185)is also gratefully acknowledged.
文摘Rockburst;Rockburst damage;Yielding rockbolt;Numerical modeling;UDEC;Underground miningThe assessment of yielding rockbolt performance during rockbursts with actual seismic loading is essential for rock-burst supporting designs.In this paper,two types of yielding rockbolts(D-bolt and Roofex)and the fully resin-grouted rebar bolt are modeled via the"rockbolt"element in universal distinct element code(UDEC)after an exact calibration procedure.A two-dimensional(2D)model of a deep tunnel is built to fully evaluate the performance(e.g.,capacity of energy-absorption and control of rock damage)of yielding and traditional rockbolts based on the simulated rockbursts.The influence of different rockburst magnitudes is also studied.The results suggest that the D-bolt can effectively control and mitigate rockburst damage during a weak rockburst because of its high strength and deformation capacity.The Roofex is too"soft"or"smooth"to limit the movement of ejected rocks and restrain the large deformation,although it has an excellent deformation capacity.The resin-grouted rebar bolt can maintain a high axial force level during rockbursts but is easy to break during dynamic shocks,which fails to control rapid rock bulking or ejection.Three types of rockbolts cannot control the large deformation and mitigate rockburst damage effectively during violent rockbursts.The rockburst damage severity can be significantly reduced by additional support with cable bolts.This study highlights the effectiveness of numerical modeling methods in assessing the complex performance of yielding rockbolts during rockbursts,which can provide some references to improve and optimize the design of rock supporting in burst-prone grounds.
文摘This paper attempts to present the findings involving rockbursts classification, rockburst failure criteria, and related control measures. Experimental investigations were performed using the strainburst testing machine and impact-induced rockburst testing machine. According to the stress paths and experimental methods, rockbursts were classified into two major groups, i.e. the strainbursts and impact-induced bursts. The mechanisms and criteria of rockburst obtained from experimental investigations were discussed. Then, the developments of constant-resistance and large-deformation bolt (CRLDB), which can adapt itself to the external loading at a constant resistance by elongating continually, were introduced. The deformation energy Of country rocks with large deformation can be absorbed by CRLDBs. Finally, the principles and the experimental results for control and prevention of rockburst using the CRLDBs were presented.
基金supported by NSFC and Open Research Fund of SKLGGE of China(No.Z019001).
文摘Rockburst,characterized by a sudden and violent rock failure resulting in the expulsion of rock from its sur roundings,poses a significant threat to the safety of tunnel excavation operations,often causing property damage and injuries to workers.Buckling has been identified as a critical mechanism leading to rockbursts.Seismic events or blasting can induce rockbursts when stress waves reach the free surface of underground openings.This paper aims to investigate the induced mechanism of tunnel rockbursts based on the dynamic buckling of rectangular rock plates.As a rock stress wave approaches a tunnel sidewall,it decomposes into perpendicular and parallel component loads relative to the free surface.The perpendicular stress reflects off the free surface,forming a rectangular thin plate of rock.The parallel stress triggers parametric resonance in the plate,resulting in a tunnel rockburst.An illustrative example of tunnel sidewall rockbursts in Jinping Ⅱ hydropower project,China,is provided to study the effects of stress wave amplitude and frequency,static and dynamic components,rock damping,multiple frequencies,and vibration modes.Based on this mechanism analysis,recommendations are proposed to mitigate the risk of tunnel rockbursts.The research offers a plausible explanation for the heightened frequency and severity of rockbursts in Tunnel Boring Machine tunnels compared to New Austrian Tunneling Method tunnels at the Jinping Ⅱ project for the first time.
基金supported by the National Natural Science Foundation of China(Grant Nos.52222810 and 52178383).
文摘Time-delayed rockbursts abruptly release huge energy,characterized by suddenness,randomness,and destructiveness,leading to substantial damage to both lives and property.This study explores the occurrence of time-delayed rockbursts through statistical analysis of case studies in deep tunnels,including an extremely intensive time-delayed rockburst case.Through on-site surveys,blasting vibration tests,numerical calculations,and true triaxial compression experiments,this study analyzes the main factors and prevention and control strategies of time-delayed rockbursts based on an extremely intense time-delayed rockburst case.The results show that most time-delayed rockbursts are of high intensity.Paramount factors influencing their occurrence consider in-situ stresses,structural planes,and dynamic disturbances.Both high in-situ stress and its gradients provide the necessary conditions for such events,while the presence of abundant structural planes and frequent dynamic disturbances largely increase the risk of rockburst potential.To mitigate the risk of time-delayed rockbursts,energy control strategies are essential,incorporating measures such as energy reduction,prerelease,energy transformation,and energy absorption.Additionally,wave-absorbed support technology can reduce the amplitude and frequency of dynamic disturbances,further decreasing the likelihood of a rockburst occurring.Time-delayed rockburst occurrence requires long disturbance durations,compared to immediate rockbursts.Long-term,continuous,and multiple dynamic events will cause significant damage accumulation and formation of microcracks in hard rock.This study offers insights into the mechanisms underpinning time-delayed rockbursts and proposes prevention strategies for their control.
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金support from the National Natural Science Foundation of China (Grant Nos.51927807,42077267 and 42277174).
文摘A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.
基金supported by the National Natural Science Foundation of China(52104133,52304227)the Natural Science Foundation of Hunan Province(2021JJ40465,2023JJ40548)the Opening Foundation of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC20KF03).
文摘To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compression and uniaxial loading–unloading tests were conducted under five saturation levels.The effect of saturation on the mechanical properties and elastic energy density was analyzed,and a method for obtaining peak energy density was proposed.The effect of saturation on the energy evolution was examined,and the energy mechanism of water in preventing rockburst was revealed.The results indicate that an increase in saturation of red sandstone decreases the input energy density,elastic energy density,dissipated energy density,peak strength and peak strain;the compaction phase of the stress–strain curve becomes shorter;the failure mode transitions from X-conjugate oblique shear to single oblique shear;the variation in the debris ejection trajectory is as follows:radiation→X-ray→oblique upward parabola→horizontal parabola→oblique downward parabola;the degree of failure intensity and fragmentation is decreased gradually.Elastic energy density is interconnected with both saturation and stress but independent of the loading path.Saturation exhibits a dual effect on the energy storage property,i.e.,increasing saturation increases the energy storage efficiency and reduces the energy storage capacity.The ratio of peak elastic energy density to peak input energy density remains constant irrespective of saturation levels.Water prevents rockburst by decreasing the energy storage capacity of surrounding rock,alleviating the stress of surrounding rock to reduce energy storage,and elevating the energy release threshold of high-energy surrounding rock.The findings of this study contribute to understanding the effect of water on rock failure from an energy perspective,as well as provide theoretical guidance for rockburst prevention by water in deep tunnels.
基金supported by the National Natural Science Foundation of China(42077244)the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization(2020-05)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0434).
文摘The formation of a pressure relief zone is crucial for rockbust prevention during drilling pressure relief.This study investi-gates the mechanical behavior of high-stress rock under real-time drilling conditions and elucidates the mechanism behind the creation of the pressure relief zone.Utilizing the independently developed SG4500 drilling rig,we conducted a theoreti-cal analysis of the forces acting on the drill bit.The analysis showed that cutting depth is directly proportional to real-time drilling speed,while tangential and normal forces are influenced by drilling diameter.Uniaxial compression tests on red sandstone specimens under high-stress real-time drilling conditions examined the impacts of different drilling speeds(800,400,100 r/min)and diameters(6,8,10,12 mm)on rock mechanical behavior,rockburst characteristics,crack evolution,and peak elastic strain energy.The results indicate that decreasing drilling speed and increasing drilling diameter weaken rock mechanical behavior,including peak strength,Young's modulus,rockburst characteristics,and peak elastic strain energy.Crack evolution analysis reveals that smaller drilling diameters and higher drilling speeds promote the development of far-field cracks,while larger drilling diameters and lower drilling speeds lead to crack formation around the borehole,and significantly affecting rock failure mechanisms.Theoretical analysis further confirms the correlation between crack evolution and stress distribution surrounding the drilling.Under vertical stress,the cracks near the borehole formed during real-time drilling are mainly influenced by tangential compressive and tensile stresses.Overall,this study provides a new perspective on understanding the mechanisms of drilling pressure relief for rockburst prevention.
基金support from the National Natural Science Foundation of China(Grant Nos.52374180 and 52327804).
文摘The principal stresses will increase or decrease during mining,leading to variations in surrounding rock strength and subsequently an influence on the risk of rockbursts.To address this issue,this study conducted theoretical analysis,numerical simulation,and field monitoring.A rockburst risk analysis method that integrates dynamic changes in the stress and strength of surrounding rock was proposed and verified in the field.The dynamic changes in maximum(σ_(1))and minimum(σ_(3))principal stresses are represented by the σ_(1) and σ_(3) differentials,respectively.The difference in principal stress differential(DPSD),defined as the difference between σ_(1) and σ_(3),was introduced as a novel indicator for rockburst risk analysis.The findings of this study demonstrate a positive correlation between increases in DPSD and heightened risks of rockbursts,as evidenced by an increase in both the frequency of rockbursts and the occurrence of large-energy microseismic events.Conversely,a decrease in DPSD is associated with a reduction in risk.Specifically,in the W1123 panel of a coal mine susceptible to rockbursts,areas exhibiting higher DPSD values experienced more frequent and severe rockbursts.The DPSD-based analysis aligned well with the observed rockburst occurrences.Subsequent optimization of rockburst prevention measures in areas with elevated DPSD led to a reduction in DPSD.Following these adjustments,the W1123 panel predominantly experienced low-energy microseismic events,with a significant decrease in large-energy microseismic events and no further rockbursts.The DPSD analysis is a valuable tool for evaluating rockburst risk and aiding in prevention,which is of great significance for disaster prevention.
基金supported by the National Natural Science Foundation of China(Nos.52374119,42477142 and 42277154)Natural Science Foundation of Jiangsu Province(No.BK20242059)+1 种基金the open fund of State Key Laboratory of Hydraulics and Mountain River Engineering(No.SKHL2306)the High-level Talent Introduction Project of Changzhou University(No.ZMF24020037)。
文摘Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)precursors in different rock types remains poorly understood.This study investigates the AE characteristics and early warning times of rockburst in slate and mica-schist under four LRs(0.05,0.15,0.25,and 0.5 MPa/s)using true triaxial unloading tests.The micro-crack state of the samples was evaluated using entropy,while critical slowing down(CSD)theory was applied to interpret AE precursors.The results reveal that as the LR increases,the rockburst stress of both rocks initially rises and then declines,with mica-schist exhibiting more severe damage and a higher dominance of tensile cracks.Notably,identifying rockburst precursors in mica-schist proved more challenging compared to slate.Among the methods tested,AE amplitude variance outperformed entropy in precursor identification.Additionally,the rockburst early warning time was found to be negatively correlated with the LR,with mica-schist consistently showing shorter warning times than slate.The CSD-derived precursor,due to its enhanced sensitivity,is recommended for early warning systems.These findings provide new insights into the role of LRs in rockburst dynamics and offer practical guidance for improving precursor identification and disaster mitigation strategies.