The application of floating photovoltaics (PVs) in hydropower plants has gained increasing interest in forming hybrid energy systems (HESs). It enhances the operational benefits of the existing hydropower plants. Howe...The application of floating photovoltaics (PVs) in hydropower plants has gained increasing interest in forming hybrid energy systems (HESs). It enhances the operational benefits of the existing hydropower plants. However, uncertainties of PV and load powers can present great challenges to scheduling HESs. To address these uncertainties, this paper proposes a novel two-stage optimization approach that combines distributionally robust chance-constrained (DRCC) and robust-stochastic optimization (RSO) approaches to minimize the operational cost of an HES. In the first stage, the scheduling of each device is obtained via the DRCC approach considering the PV power and load forecast errors. The second stage provides a robust near real time energy dispatch according to different scenarios of PV power and load demand. The solution of the RSO problem is obtained via a novel double-layer particle swarm optimization algorithm. The performance of the proposed approach is compared to the traditional stochastic and robust-stochastic approaches. Simulation results de- monstrate the superiority of the proposed two-stage approach and its solution method in terms of operational cost and execution time.展开更多
文摘The application of floating photovoltaics (PVs) in hydropower plants has gained increasing interest in forming hybrid energy systems (HESs). It enhances the operational benefits of the existing hydropower plants. However, uncertainties of PV and load powers can present great challenges to scheduling HESs. To address these uncertainties, this paper proposes a novel two-stage optimization approach that combines distributionally robust chance-constrained (DRCC) and robust-stochastic optimization (RSO) approaches to minimize the operational cost of an HES. In the first stage, the scheduling of each device is obtained via the DRCC approach considering the PV power and load forecast errors. The second stage provides a robust near real time energy dispatch according to different scenarios of PV power and load demand. The solution of the RSO problem is obtained via a novel double-layer particle swarm optimization algorithm. The performance of the proposed approach is compared to the traditional stochastic and robust-stochastic approaches. Simulation results de- monstrate the superiority of the proposed two-stage approach and its solution method in terms of operational cost and execution time.