A mixed distribution of empirical variances, composed of two distributions the basic and contaminating ones, and referred to as PERG mixed distribution of empirical variances, is considered. In the paper a robust inve...A mixed distribution of empirical variances, composed of two distributions the basic and contaminating ones, and referred to as PERG mixed distribution of empirical variances, is considered. In the paper a robust inverse problem solution is given, namely a (new) robust method for estimation of variances of both distributions—PEROBVC Method, as well as the estimates for the numbers of observations for both distributions and, in this way also the estimate of contamination degree.展开更多
The classical least-squares methods may only solve LS β when the variance-covariance (matrix ∑(σ2 ∑)) is known (σ2 is unknown and ∑ is known) in linear model. The author thinks that maximum likelihood type est...The classical least-squares methods may only solve LS β when the variance-covariance (matrix ∑(σ2 ∑)) is known (σ2 is unknown and ∑ is known) in linear model. The author thinks that maximum likelihood type estimation (M-estimation) should replace LS estimation. The paper discusses robust estimations of parameter vector and variance components for corresponding error model based on the principle of maximum likelihood type estimations (M-estimations). The influence functions are given respectively.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
文摘A mixed distribution of empirical variances, composed of two distributions the basic and contaminating ones, and referred to as PERG mixed distribution of empirical variances, is considered. In the paper a robust inverse problem solution is given, namely a (new) robust method for estimation of variances of both distributions—PEROBVC Method, as well as the estimates for the numbers of observations for both distributions and, in this way also the estimate of contamination degree.
文摘The classical least-squares methods may only solve LS β when the variance-covariance (matrix ∑(σ2 ∑)) is known (σ2 is unknown and ∑ is known) in linear model. The author thinks that maximum likelihood type estimation (M-estimation) should replace LS estimation. The paper discusses robust estimations of parameter vector and variance components for corresponding error model based on the principle of maximum likelihood type estimations (M-estimations). The influence functions are given respectively.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.