期刊文献+
共找到8,226篇文章
< 1 2 250 >
每页显示 20 50 100
The Calibration Method of Line Structured Light Sensor for Integrated Position and Pose Detection of Highway Guardrail Inspection Robots
1
作者 WANG Rui BAI Jiadi +4 位作者 XUE Yingqi PENG Lu FENG Xiaofan DING Ailing WEI Baojiang 《Wuhan University Journal of Natural Sciences》 2025年第4期367-378,共12页
The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the probl... The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods. 展开更多
关键词 highway corrugated guardrail structured light visual scanning structured light sensor calibration guardrail detection robot robot motion posture parameters
原文传递
Fuzzy Logic-Based Robust Global Consensus in Leader-Follower Robotic Systems under Sensor and Actuator Attacks Using Hybrid Control Strategy
2
作者 Asad Khan Fathia Moh.Al Samman +4 位作者 Waqar Ul Hassan Mohammed M.A.Almazah A.Y.Al-Rezami Azmat Ullah Khan Niazi Adnan Manzor 《Computer Modeling in Engineering & Sciences》 2025年第8期1971-1999,共29页
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso... This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios. 展开更多
关键词 robotic systems CONSENSUS sensor dynamic control strategy leader-follower framework system stand actuator attacks:fuzzy logic systems(FLSs)
在线阅读 下载PDF
Simulation Analysis of Deformation Control for Magnetic Soft Medical Robots
3
作者 Jingxi Wang Baoyu Liu +2 位作者 Edmond Q.Wu Jin Ma Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期794-796,共3页
Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues ... Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues for precise treatment within intricate regions of the human body. 展开更多
关键词 robot simulation COMSOL
在线阅读 下载PDF
Reinforcement Learning-Based Simulation of Seal EngravingRobot in the Context of Artificial Intelligence
4
作者 Ran Tan Khayril Anwar Bin Khairudin 《Journal of Artificial Intelligence and Technology》 2024年第4期288-295,共8页
The rapid development of robotics technology has made people’s lives and work more convenient and efficient.Theresearch and simulation of robots combined with reinforcement learning intelligent algorithms have become... The rapid development of robotics technology has made people’s lives and work more convenient and efficient.Theresearch and simulation of robots combined with reinforcement learning intelligent algorithms have become a hotspot in variousfields of robot applications.In view of this,this study is based on deep reinforcement learning convolutional neural networks,combined with point cloud models,proximal strategy optimization algorithms,and flexible action evaluation algorithms.A sealcutting robot based on deep reinforcement learning has been proposed.The final results show that the descent speed of the sealcutting robot with the root mean square difference as the performance standard is about 1%faster than the flexible actionevaluation algorithm.About 2%is faster than the proximal strategy optimization algorithm.It is about 4%faster than the deepdeterministic strategy gradient algorithm.This indicates that the research model has certain advantages in terms of actualaccuracy after cutting.The fluctuation of this model is about 10%smaller than the evaluation of flexible actions and about 60%smaller than the gradient of deep deterministic strategies.Therefore,the research model has the highest overall stability withoutfalling into local optima.In addition,compared to the near-end strategy optimization algorithm,it falls into local optima,resultingin a low coincidence degree of about 17%.The deep deterministic strategy gradient algorithm has a large fluctuation amplitudeduring the seal cutting process,and the overall curve is relatively slow,with a final overlap of about 70%.The overlap degree offlexible action evaluation is slightly higher by about 83%.The maximum stability of the model’s overlap is best around 90%.Through experiments,it can be found that the seal cutting robot proposed in the study based on deep reinforcement learningmaintains certain advantages in performance indicators in various types of tests. 展开更多
关键词 flexible action evaluation point cloud model reinforcement learning robotS simulation
在线阅读 下载PDF
Motion simulation and experiment of a novel modular self-reconfigurable robot
5
作者 吴秋轩 曹广益 费燕琼 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期185-190,共6页
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo... Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible. 展开更多
关键词 modular self-reconfigurable robot structure design motion simulation distributed control
在线阅读 下载PDF
Object-tracking robot using ultrasonic sensor and servo motor 被引量:1
6
作者 Kyounghwan Kim Hyunseop Lim +1 位作者 Yoseop Hwang Jangmyung Lee 《Journal of Measurement Science and Instrumentation》 CAS 2012年第4期379-382,共4页
This paper proposes a method that rotation angle of servo motor and distance values of ultrasonic sensor are used for tracking an object in real-time while the robot keeps regular distance.Object detection distance wi... This paper proposes a method that rotation angle of servo motor and distance values of ultrasonic sensor are used for tracking an object in real-time while the robot keeps regular distance.Object detection distance widens by using ultrasonic sensors and object recognition,and movement of robot is controlled by angle of servo motor and distance of ultrasonic sensors.Not adopting the existing tracking methods:camera,laser-infrared(LRF)and many ultrasonic sensors,the proposed method proves that it is possible to track object using ultrasonic sensor and servo motor.Trajectory of robot is represented and analysed according to movement of object in limited conditions. 展开更多
关键词 tracking robot ultrasonic sensor servo motor mobile robot
在线阅读 下载PDF
Humanoid Robot 3-D Motion Simulation for Hardware Realization
7
作者 曹曦 赵群飞 马培荪 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期713-717,722,共6页
In this paper,three dimensions kinematics and kinetics simulation are discussed for hardware realization of a physical biped walking-chair robot.The direct and inverse close-form kinematics solution of the biped walki... In this paper,three dimensions kinematics and kinetics simulation are discussed for hardware realization of a physical biped walking-chair robot.The direct and inverse close-form kinematics solution of the biped walking-chair robot is deduced.Several gaits are realized with the kinematics solution,including walking straight on level floor,going up stair,squatting down and standing up.Zero Moment Point(ZMP)equation is analyzed considering the movement of the crew.The simulated biped walking-chair robot is used for mechanical design,gaits development and validation before they are tested on real robot. 展开更多
关键词 Humanoid robot walking chair robot gait design 3D simulation ZMP
在线阅读 下载PDF
Identification of Issues in Predicting Multi-Robot Performance through Model-Based Simulations
8
作者 Shameka Dawson Briana Lowe Wellman Monica Anderson 《Intelligent Control and Automation》 2011年第2期133-143,共11页
Predicting the performance of intelligent multi-robot systems is advantageous because running physical experiments with teams of robots can be costly and time consuming. Controlling for every factor can be difficult i... Predicting the performance of intelligent multi-robot systems is advantageous because running physical experiments with teams of robots can be costly and time consuming. Controlling for every factor can be difficult in the presence of minor disparities (i.e. battery charge). Access to a variety of environmental configurations and hardware choices is prohibitive in many cases. With the eminent need for dependable robot controllers and algorithms, it is essential to understand when real robot performance can be accurately predicted. New prediction methods must account for the effects of digital and physical interaction between the robots that are more complex than just collision detection of 2D or physics-based 3D models. In this paper, we identify issues in predicting multi-robot performance and present examples of statistical and model-based simulation methods and their applicability to multi-robot systems. Even when sensor noise, latency and environmental configuration are modeled in some complexity, multi-robot systems interject interference and messaging latency, causing many prediction systems to fail to correlate to absolute or relative performance. We support this supposition by comparing results from 3D physics-based simulations to identical experiments with a physical robot team for a coverage task. 展开更多
关键词 INTELLIGENT robotS MULTI-robot Systems PERFORMANCE Prediction simulation
暂未订购
ROBOT'S MOTION ERROR AND ONLINE COMPENSATION BASED ON FORCE SENSOR 被引量:2
9
作者 GAN Fangjian LIU Zhengshi +1 位作者 REN Chuansheng ZHANG Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期8-11,共4页
Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equa... Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot. 展开更多
关键词 Multi-axis force sensor robot ERROR COMPENSATION
在线阅读 下载PDF
Dynamic Finite Element Modeling and Simulation of Soft Robots 被引量:6
10
作者 Liang Ding Lizhou Niu +4 位作者 Yang Su Huaiguang Yang Guangjun Liu Haibo Gao Zongquan Deng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期45-55,共11页
Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are i... Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment. 展开更多
关键词 Soft robot Finite-element modeling Dynamic simulation
在线阅读 下载PDF
Dynamic simulation and experimental study of inspection robot for high-voltage transmission-line 被引量:6
11
作者 肖晓晖 吴功平 +1 位作者 杜娥 史铁林 《Journal of Central South University of Technology》 EI 2005年第6期726-731,共6页
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ... A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control. 展开更多
关键词 inspection robot TRANSMISSION-LINE dynamic modeling numerical simulation dynamic experiment
在线阅读 下载PDF
Study on motion simulation of arc welding robot based on UG 被引量:2
12
作者 冯胜强 胡绳荪 +1 位作者 杜乃成 申俊琦 《China Welding》 EI CAS 2008年第2期54-57,共4页
The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model ... The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model of MOTOMAN-HP6 arc welding robot. The kinematic model under link-pole coordinate system is established by the second development function offered by UG/OPEN API and the method of programming using VC ++ 6. 0. The methods of founding model and operational procedures are introduced, which provides a good basis for off-line programming technique under Unigraphies condition. 展开更多
关键词 arc welding robot off-line programming UNIGRAPHICS motion simulation
在线阅读 下载PDF
STUDY ON SINGULAR CONFIGURATIONS AND COMPUTER SIMULATION OF 6R ROBOT 被引量:1
13
作者 Zhang Kai Hu Dejin Liu Chengliang School of Mechanical Engineering,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期177-180,共4页
When robot is at singular configuration, the limited hand velocity wouldrequire some joints with infeasible speeds so as to lead unsafely of the system. A method of solvingthe approximate velocity of joint near singul... When robot is at singular configuration, the limited hand velocity wouldrequire some joints with infeasible speeds so as to lead unsafely of the system. A method of solvingthe approximate velocity of joint near singular configuration point by adding damped vector isproposed and a modified algorithm is provided. With the analysis of J^(-1) the singularconfigurations of 6R robot are divided into structure boundary singularity , boundary singularity ,inner singularity and wrist singularity. The conditions of singularities of the robot have beenascertained. The computer simulations of the singularities of the robot are developed, which havemany advantages over previous description methods of the singular configurations of robot. With thehelp of boundary singularity analysis, a application in welding trajectory planning checking of therobot has been carried out and the simulation result proved visualized and useful. 展开更多
关键词 robot Singular configuration Computer simulation
在线阅读 下载PDF
Numerical Simulation of Methane Distribution and Sensor Placement in 2-Dimension Roadway 被引量:5
14
作者 SUN Ji-ping TANG Liang CHEN Wei WANG Fu-zeng 《Journal of China University of Mining and Technology》 EI 2007年第3期372-375,共4页
In order to provide a theoretical basis for methane sensor placement in the vertical direction of a tunnel,the software Fluent was used to simulate methane distribution. A geometric roadway model was established and d... In order to provide a theoretical basis for methane sensor placement in the vertical direction of a tunnel,the software Fluent was used to simulate methane distribution. A geometric roadway model was established and divided by grids. Methane distribution in both level and vertical sections was simulated using a realizable k-ε model with the Fluent software according to a conservation equation in a turbulent state,a turbulent kinetic energy equation and a turbulent dissipation rate equation. The realizable k-ε model and the Fluent software were used to simulate methane distribution according to the principle of the conservation equation in a state of turbulent flow. The results show that after overflow-ing,a methane level with a certain thickness is formed. Methane density curves at three specific levels were internally consistent and methane density at higher levels is denser than that at lower levels. Methane distribution becomes thinner in the direction of wind and methane in the vertical direction becomes uniform if wind speed is high. The distance be-tween sensors and roof should be less than 300 mm which is in agreement with mine safety regulations. 展开更多
关键词 numerical simulation methane sensor placement methane distribution realizable k-ε model
在线阅读 下载PDF
A comprehensive review of tactile sensing technologies in space robotics
15
作者 Hadi JAHANSHAHI Zheng H.ZHU 《Chinese Journal of Aeronautics》 2025年第7期340-373,共34页
This review explores the current state and future prospects of tactile sensing technologies in space robotics,addressing the unique challenges posed by harsh space environments such as extreme temperatures,radiation,m... This review explores the current state and future prospects of tactile sensing technologies in space robotics,addressing the unique challenges posed by harsh space environments such as extreme temperatures,radiation,microgravity,and vacuum conditions,which necessitate specialized sensor designs.We provide a detailed analysis of four primary types of tactile sensors:resistive,capacitive,piezoelectric,and optical,evaluating their operating principles,advantages,limitations,and specific applications in space exploration.Recent advancements in materials science,including the development of radiation-hardened components and flexible sensor materials,are discussed alongside innovations in sensor design and integration techniques that enhance performance and durability under space conditions.Through case studies of various space robotic systems,such as Mars rovers,robotic arms like Canadarm,humanoid robots like Robonaut,and specialized robots like Astrobee and LEMUR 3,this review highlights the crucial role of tactile sensing in enabling precise manipulation,environmental interaction,and autonomous operations in space.Moreover,it synthesizes current research and applications to underscore the transformative impact of tactile sensing technologies on space robotics and highlights their pivotal role in expanding human presence and scientific understanding in space,offering strategic insights and recommendations to guide future research and development in this critical field. 展开更多
关键词 Tactile sensors Resistive sensors Capacitive sensors PIEZOELECTRICITY Optical sensors Space robotics
原文传递
Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics
16
作者 Lin Guo Rui Xu Denys Makarov 《Chinese Journal of Structural Chemistry》 2025年第2期14-16,共3页
In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately dete... In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately detect any form of relative movement of objects without physical contact.For instance,in the precise control of robotic arms or machine tools,a permanent magnet is used as a reference.The magnetic sensor detects the relative movement of magnet by sensing changes in the magnetic field strength.These changes are converted into electrical signals,which are fed back to the control system,enabling accurate positioning and control of the device.This advanced detection technology not only greatly enhances measurement precision but also significantly extends the lifespan of equipment.Among various types of magnetic field sensors,magnetoresistive(MR)sensors stand out for their exceptional performance[1].The high sensitivity allows them to detect minimal changes of magnetic fields in high-precision measurements.Today,MR sensors are widely used across numerous fields,including automobile industries,information processing and storage,navigation systems,biomedical applications,etc[1,2].With their outstanding performance and wide-ranging applications,MR sensors are at the forefront of sensor technology. 展开更多
关键词 permanent magnet field sensors magnetic field sensors magnetic sensor machine toolsa MAGNETOELECTRONICS magnetoresistive sensors precise control robotic arms
原文传递
Optical fiber based slide tactile sensor for underwater robots 被引量:1
17
作者 谭定忠 王启明 +2 位作者 宋瑞晗 姚昕 顾义华 《Journal of Marine Science and Application》 2008年第2期122-126,共5页
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ... In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator. 展开更多
关键词 underwater robot MANIPULATOR tactile sensor optical fiber
在线阅读 下载PDF
Gait simulation of new robot for human walking on sand 被引量:1
18
作者 张立勋 王令军 +1 位作者 王凤良 王克宽 《Journal of Central South University》 SCIE EI CAS 2009年第6期971-975,共5页
In order to simulate the gait of human walking on different terrains a new robot with six degrees of freedom was proposed. Based on sand bearing characteristic compliance control was introduced to control system in ho... In order to simulate the gait of human walking on different terrains a new robot with six degrees of freedom was proposed. Based on sand bearing characteristic compliance control was introduced to control system in horizontal and vertical movement directions at the end of the robot,and position control in attitude. With Matlab/Simulink toolbox,the system control models were established,and the bearing characteristics of rigid ground,hard sand,soft sand and softer sand were simulated. The results show that 0,0.62,0.89 and 1.12 mm are the maximal subsidences of the four kinds of ground along the positive direction of x-axis,respectively,and 0,-0.96,-1.99 and -3.00 mm are the maximal subsidences along the negative direction of x-axis,respectively. Every subsidence along y-axis is negative,and 0,-4.12,-8.23 and -12.01 mm are the maximal subsidences of the four kinds of ground,respectively. Simulation results show that the subsidence of footboard points to inferior anterior in early stage of stand phase,while points to posterior aspect in late stage. The subsidence tends to point to posterior aspect in the whole. These results are basically consistent with the gait characteristics of human walking on sand. Gait simulation of the robot for human walking on sand is achieved. 展开更多
关键词 robot gait simulation sand bearing characteristic compliance control
在线阅读 下载PDF
Passive simulation method of turbine flow sensors based on the 6-DOF model 被引量:2
19
作者 Guo Suna Ji Zengqi +3 位作者 Liu Xu Wang Fan Zhao Ning Fang Lide 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期242-251,共10页
A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulat... A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulation method controls the six degrees of freedom of the impeller using the user-defined functions(UDF)program so that it can only rotate under the impact of fluid.The impeller speed can be calculated in real-time,and the inlet speed can be set with time to obtain the dynamic performance of the turbine flow sensors.Based on this simulation method,three turbine flow sensors with different diameters were simulated,and the reliability of the simulation method was verified by both steady-state and unsteady-state experiments.The results show that the trend of meter factor with flow rate acquired from the simulation is close to the experimental results.The deviation between the simulation and experiment results is low,with a maximum deviation of 2.88%.In the unsteady simulation study,the impeller speed changed with the inlet velocity of the turbine flow sensor,showing good tracking performance.The passive simulation method can be used to predict the dynamic performance of the turbine flow sensor. 展开更多
关键词 turbine flow sensor computational fluid dynamics(CFD) dynamic performance unsteady-state flow simulation method
在线阅读 下载PDF
Optical Fiber Type Slide Tactile Sensor Used for Underwater Robot 被引量:1
20
作者 TAN Ding-zhong, ZHANG Li-xun, WANG Li-quan, MENG Zhuo, MENG Qing-xin (Harbin Engineering University, Harbin 150001, CHN) 《Semiconductor Photonics and Technology》 CAS 2000年第3期144-147,共4页
Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner... Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved. 展开更多
关键词 Underwater robot Slide tactile sensor Neural network\
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部