In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h?...In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.展开更多
This paper is concerned with the elliptic problems with nonlinear StefanBoltzmann boundary condition.By combining with the monotone method,the RobinRobin domain decomposition methods are proposed to decouple the nonli...This paper is concerned with the elliptic problems with nonlinear StefanBoltzmann boundary condition.By combining with the monotone method,the RobinRobin domain decomposition methods are proposed to decouple the nonlinear interface and boundary condition.The monotone properties are verified for both the multiplicative and the additive domain decomposition methods.The numerical results confirm the theoretical analysis.展开更多
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.展开更多
文摘In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.
基金supported by the National Basic Research Program(2005CB321701)111 project grant(B08018)+5 种基金supported by NSFC Tianyuan Fund for Mathematics(10826105)in part by Shanghai Key Laboratory of Intelligent Information Processing(IIPL-09-003)supported by the Shanghai Natural Science Foundation(07JC14001)supported by the Global COE Programsupported in part by National 863 Program of China(2009AA012201)supported in part by Grants-in-Aid for Scientific Research(20654011,21340021)from Japan Society for the Promotion of Science.
文摘This paper is concerned with the elliptic problems with nonlinear StefanBoltzmann boundary condition.By combining with the monotone method,the RobinRobin domain decomposition methods are proposed to decouple the nonlinear interface and boundary condition.The monotone properties are verified for both the multiplicative and the additive domain decomposition methods.The numerical results confirm the theoretical analysis.
文摘This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.