With the evolution of next-generation communication networks,ensuring robust Core Network(CN)architecture and data security has become paramount.This paper addresses critical vulnerabilities in the architecture of CN ...With the evolution of next-generation communication networks,ensuring robust Core Network(CN)architecture and data security has become paramount.This paper addresses critical vulnerabilities in the architecture of CN and data security by proposing a novel framework based on blockchain technology that is specifically designed for communication networks.Traditional centralized network architectures are vulnerable to Distributed Denial of Service(DDoS)attacks,particularly in roaming scenarios where there is also a risk of private data leakage,which imposes significant operational demands.To address these issues,we introduce the Blockchain-Enhanced Core Network Architecture(BECNA)and the Secure Decentralized Identity Authentication Scheme(SDIDAS).The BECNA utilizes blockchain technology to decentralize data storage,enhancing network security,stability,and reliability by mitigating Single Points of Failure(SPoF).The SDIDAS utilizes Decentralized Identity(DID)technology to secure user identity data and streamline authentication in roaming scenarios,significantly reducing the risk of data breaches during cross-network transmissions.Our framework employs Ethereum,free5GC,Wireshark,and UERANSIM tools to create a robust,tamper-evident system model.A comprehensive security analysis confirms substantial improvements in user privacy and network security.Simulation results indicate that our approach enhances communication CNs security and reliability,while also ensuring data security.展开更多
In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004,...In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.展开更多
We performed extensive quasiclassical trajectory calculations for the H+C_(2)D_(2)→HD+C_(2)D/D_(2)+C_(2)H reaction based on a recently developed,global and accurate potential energy surface by the fundamental-invaria...We performed extensive quasiclassical trajectory calculations for the H+C_(2)D_(2)→HD+C_(2)D/D_(2)+C_(2)H reaction based on a recently developed,global and accurate potential energy surface by the fundamental-invariant neural network method.The direct abstraction pathway plays a minor role in the overall reactivity,which can be negligible as compared with the roaming pathways.The acetylenefacilitated roaming pathway dominates the reactivity,with very small contributions from the vinylidene-facilitated roaming.Although the roaming pathways proceed via the short-lived or long-lived complex forming process,the computed branching ratio of product HD to D_(2) is not far away from 2:1,implying roaming dynamics for this reaction is mainly contributed from the long-lived complex-forming process.The resulting angular distributions for the two product channels are also quite different.These computational results give valuable insights into the significance and isotope effects of roaming dynamics in the biomolecular reactions.展开更多
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.展开更多
Protocols for authentication and key establishment have special requirements in a wireless environment. This paper presents a new key agreement protocol HAKA (home server aided key agreement) for roaming scenario. I...Protocols for authentication and key establishment have special requirements in a wireless environment. This paper presents a new key agreement protocol HAKA (home server aided key agreement) for roaming scenario. It is carried out by a mobile user and a foreign server with the aid of a home server, which provides all necessary authentications of the three parties. The session key can be obtained by no one except for the mobile user and the foreign server. HAKA is based on Diffie-Hellman key exchange and a secure hash function without using any asymmetric encryption. The protocol is proved secure in Canetti-Krawczyk (CK) model.展开更多
Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies,uneven Security Edge Protection Proxy(SEPP)deployment,and the dynamic nature o...Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies,uneven Security Edge Protection Proxy(SEPP)deployment,and the dynamic nature of inter-Public Land Mobile Network(inter-PLMN)signaling.Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks,particularly as roaming expands into enterprise and Internet of Things(IoT)domains.This work addresses these challenges by designing a scalable 5G Standalone testbed,generating the first intrusion detection dataset specifically tailored to roaming threats,and proposing a deep learning based intrusion detection framework for cloud-native environments.Six deep learning models including Multilayer Perceptron(MLP),one-dimensional Convolutional Neural Network(1D CNN),Autoencoder(AE),Recurrent Neural Network(RNN),Gated Recurrent Unit(GRU),and Long Short-Term Memory(LSTM)were evaluated on the dataset using both weighted and balanced metrics to account for strong class imbalance.While all models achieved over 99%accuracy,recurrent architectures such as GRU and LSTM outperformed others in balanced accuracy and macro-level evaluation,demonstrating superior effectiveness in detecting rare but high-impact attacks.These results confirm the importance of sequence-aware Artificial Intelligence(AI)models for securing roaming scenarios,where transient and contextdependent threats are common.The proposed framework provides a foundation for intelligent,adaptive intrusion detection in 5G and offers a path toward resilient security in Beyond 5G and 6G networks.展开更多
NOT quite as overwhelming as the GreatWall, Forbidden City or Chinese Opera,roaming amongst the stalls scattered on theground at markets like Beijing’s Panjiayuanis nevertheless a cultural experience uniqueto China.
With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residentia...With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.展开更多
基金supported by the Beijing Natural Science Foundation(L223025,4242003)Qin Xin Talents Cultivation Program of Beijing Information Science&Technology University(QXTCP B202405)。
文摘With the evolution of next-generation communication networks,ensuring robust Core Network(CN)architecture and data security has become paramount.This paper addresses critical vulnerabilities in the architecture of CN and data security by proposing a novel framework based on blockchain technology that is specifically designed for communication networks.Traditional centralized network architectures are vulnerable to Distributed Denial of Service(DDoS)attacks,particularly in roaming scenarios where there is also a risk of private data leakage,which imposes significant operational demands.To address these issues,we introduce the Blockchain-Enhanced Core Network Architecture(BECNA)and the Secure Decentralized Identity Authentication Scheme(SDIDAS).The BECNA utilizes blockchain technology to decentralize data storage,enhancing network security,stability,and reliability by mitigating Single Points of Failure(SPoF).The SDIDAS utilizes Decentralized Identity(DID)technology to secure user identity data and streamline authentication in roaming scenarios,significantly reducing the risk of data breaches during cross-network transmissions.Our framework employs Ethereum,free5GC,Wireshark,and UERANSIM tools to create a robust,tamper-evident system model.A comprehensive security analysis confirms substantial improvements in user privacy and network security.Simulation results indicate that our approach enhances communication CNs security and reliability,while also ensuring data security.
文摘In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.
基金supported by the National Natural Science Foundation of China(No.22173099 and No.12174044)Liao Ning Revitalization Talents Program(XLYC1907190)。
文摘We performed extensive quasiclassical trajectory calculations for the H+C_(2)D_(2)→HD+C_(2)D/D_(2)+C_(2)H reaction based on a recently developed,global and accurate potential energy surface by the fundamental-invariant neural network method.The direct abstraction pathway plays a minor role in the overall reactivity,which can be negligible as compared with the roaming pathways.The acetylenefacilitated roaming pathway dominates the reactivity,with very small contributions from the vinylidene-facilitated roaming.Although the roaming pathways proceed via the short-lived or long-lived complex forming process,the computed branching ratio of product HD to D_(2) is not far away from 2:1,implying roaming dynamics for this reaction is mainly contributed from the long-lived complex-forming process.The resulting angular distributions for the two product channels are also quite different.These computational results give valuable insights into the significance and isotope effects of roaming dynamics in the biomolecular reactions.
基金supported by the National Natural Science Foundation of China(No.21503130 and No.11674212,and No.21603144)supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.
基金the National High Technology Research and Development Program of China (2007AA01Z43)
文摘Protocols for authentication and key establishment have special requirements in a wireless environment. This paper presents a new key agreement protocol HAKA (home server aided key agreement) for roaming scenario. It is carried out by a mobile user and a foreign server with the aid of a home server, which provides all necessary authentications of the three parties. The session key can be obtained by no one except for the mobile user and the foreign server. HAKA is based on Diffie-Hellman key exchange and a secure hash function without using any asymmetric encryption. The protocol is proved secure in Canetti-Krawczyk (CK) model.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00441484,Development of Open Roaming Technology for Private 5G Network)。
文摘Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies,uneven Security Edge Protection Proxy(SEPP)deployment,and the dynamic nature of inter-Public Land Mobile Network(inter-PLMN)signaling.Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks,particularly as roaming expands into enterprise and Internet of Things(IoT)domains.This work addresses these challenges by designing a scalable 5G Standalone testbed,generating the first intrusion detection dataset specifically tailored to roaming threats,and proposing a deep learning based intrusion detection framework for cloud-native environments.Six deep learning models including Multilayer Perceptron(MLP),one-dimensional Convolutional Neural Network(1D CNN),Autoencoder(AE),Recurrent Neural Network(RNN),Gated Recurrent Unit(GRU),and Long Short-Term Memory(LSTM)were evaluated on the dataset using both weighted and balanced metrics to account for strong class imbalance.While all models achieved over 99%accuracy,recurrent architectures such as GRU and LSTM outperformed others in balanced accuracy and macro-level evaluation,demonstrating superior effectiveness in detecting rare but high-impact attacks.These results confirm the importance of sequence-aware Artificial Intelligence(AI)models for securing roaming scenarios,where transient and contextdependent threats are common.The proposed framework provides a foundation for intelligent,adaptive intrusion detection in 5G and offers a path toward resilient security in Beyond 5G and 6G networks.
文摘NOT quite as overwhelming as the GreatWall, Forbidden City or Chinese Opera,roaming amongst the stalls scattered on theground at markets like Beijing’s Panjiayuanis nevertheless a cultural experience uniqueto China.
基金Research and Development of Wear-resistant Filament Monitoring System for Medicinal Core(Project No.:H20240260)Anqing Normal University Wanjiang Cultural Digital Protection and Intelligent Processing Key Laboratory Project,“Huangmei Opera Intelligent Digital Human Design and Application”+1 种基金Anqing Mayor Triangle Future Industry Research Institute Science and Technology Project,“Exploration of the Metaverse Design of Opera Culture and the Integration Model of Cultural Tourism”Anhui Provincial Social Science Innovation and Development Research Project,“Huangmei Opera Cultural Relics and Cultural Digital Native Protection and Utilization Innovation Research Project(Project No.:2023KY012)”。
文摘With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.