Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately ...Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately understood.This study investigates the characteristics and mechanisms of collapse in a shallow buried cross roadway subjected to mining blast disturbances,drawing insights from an engineering project in Anshan City,Northeast China.A strain-softening model based on unified strength theory was developed to effectively calculate and analyze the loosened zone thickness and surrounding rock displacement.The PFC3D-FLAC3D coupling method was employed to clarify the concentrated collapse area within the cross roadway,providing insight into the collapse mechanism through a cross-sectional model of the concentrated region.Results demonstrate that 50%of the cross roadway collapsed following the mining blast.Subsidence at the intersection was approximately one-fifth(0.66 m)of cross roadway’s net height,exceeding subsidence in other areas by 1.3.Under the action of repeated mining blasting,the cross section of the connection roadway forms a semi-elliptical high tensile stress zone.After the cumulative damage of the surrounding rock of the connection roadway exceeds the ultimate yield strength,the cumulative stress release causes the tensile failure of the surrounding rock.The plastic zone of the connecting roadway expands to three times of the initial,and continues to develop.The surrounding rock on both sides experienced tensile stress,cumulative stress release,and the vertical propagation of tensile cracks.展开更多
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ...As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.展开更多
In extremely close-distance coal seam(ECDCS)mining,section coal pillars remain after upper coal seam(UCS)extraction.Thus,for layout and support design of lower coal seam(LCS)mining roadways,it is critical to account f...In extremely close-distance coal seam(ECDCS)mining,section coal pillars remain after upper coal seam(UCS)extraction.Thus,for layout and support design of lower coal seam(LCS)mining roadways,it is critical to account for UCS goaf deterioration and residual coal pillar(RCP)-induced stress disturbance.Taking the 6.4 m layer spacing of ECDCS mining in Nanyangpo Coal Mine as a case study,this research aimed to determine the optimal layout and surrounding rock control method for the 24202-ventilation roadway in the RCP area.First,the challenges of roadway layout and support under RCP were clarified:three layout methods face distinct RCPinduced stress disturbances and goaf-related roof damage.A finite element model was established;the second invariant of deviatoric stress(J_(2))and horizontal stress index were introduced to analyze plastic zone and stress evolution after UCS mining.Results show that J_(2)distributes symmetrically,with its peak diffusing downward and attenuating in a“/”-shaped pattern.Six schemes were simulated to compare plastic zone distributions at different positions,revealing that the optimal layout consists of a roadway alignment with the RCP center.Based on roadway layout and roof conditions,a cooperative control scheme was proposed:deep,strong anchorage with long cables across the RCP,and shallow stable support with short bolts in the ECDCS.This scheme secures roof cables anchored to the UCS RCP roof to achieve cross-seam anchorage.On-site borehole peeping and loose circle tests confirm smooth surrounding rock hole walls and limited failure range.Specifically,surrounding rock deformation and roof separation were controlled within 200 mm and 80 mm,respectively,with stable bolt/cable support resistance.These results offer an innovative solution for roadway layout design and support strategies under RCP in ECDCS,with significant engineering application value.展开更多
The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field.Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed.Dif...The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field.Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed.Different forms of failure characteristics occur in the roadway.In order to study the failure mechanism with different spatial characteristics,rock-like material specimens with holes in 9 different horizontal and vertical angles were designed.The true triaxial test system was used to carry out the test with the same loading path.The results show that the horizontal angle a and vertical angle β have a significant effect on the specimen strength,specimen rupture angle,and the form of spalling failure in the hole.The spatial angle leads to the formation of asymmetric heterotype V-notches in both sides within the hole.The asymmetry is evident in both the depth and extent of spalling.The strength of the specimen increases and then decreases with increasing vertical angle β.The rupture angle increases and then decreases with increasing horizontal angle a and increases with the increase of the vertical angle β.The stress analytical model of the specimen under three-dimensional compression was established.The distribution of principal stresses around the holes was theoretically analyzed.It is found that the presence of spatial angle changes the distribution of principal stresses around the hole from symmetric to asymmetric distribution.The shift of the principal stresses is responsible for the change from a V-notch to a heterotype V-notch.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati...The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.展开更多
In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanic...In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanical model is introduced to represent various fault angles,followed by a series of PFC2D loading and unloading tests to validate the model and investigate fault instability and crack propagation under different excavation rates and angles.The results show that(1)the theoretical fault model,impacted by roadway advancing,shows a linear reduction in horizontal stress at a rate of-2.01 MPa/m,while vertical stress increases linearly at 4.02 MPa/m.(2)Atfield excavation speeds of 2.4,4.8,7.2,and 9.6 m/day,the vertical loading rates for the model are 2.23,4.47,6.70,and 8.93 Pa/s,respectively.(3)Roadway advancement primarily causes tensile-compressive failures in front of the roadway,with a decrease in tensile cracks as the stress rate increases.(4)An increase in the fault angle leads to denser cracking on the fault plane,with negligible cracking near the fault itself.The dominant crack orientation is approximately 90°,aligned with the vertical stress.展开更多
Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analy...Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.展开更多
The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non...The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization.展开更多
Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in Ch...Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.展开更多
Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadwa...Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.展开更多
Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of...Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software.The optimal support parameters of the side rock bolts and anchor cables were subsequently determined,and the support effect of gob-side entry in a mining scenario was verified.The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body,producing a good protective effect on the coal body of the air-intake entry roof and side wall.This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables,which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable.展开更多
This paper describes the procedures for design of supports and stabilization measures in the roadways.The procedures are based on the system developed in Ostrava-Karvina coal basin in Czech Republic.The calculation of...This paper describes the procedures for design of supports and stabilization measures in the roadways.The procedures are based on the system developed in Ostrava-Karvina coal basin in Czech Republic.The calculation of load bearing capacity of roadway supports contains the period of roadway construction and mining in the vicinities,based on the size of the natural rock arch.The loading of supports during mining comes from a stress wave in the rock mass in the forefront of coalface and the caving area of mined-out panel.The input data for the calculation method are deduced according to in-situ measurements of convergence and displacement in the roadways.展开更多
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w...A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.展开更多
Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies f...Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.展开更多
To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the...To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling.展开更多
In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupli...In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.展开更多
We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC^(3D)was used to investigate the maximum t...We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC^(3D)was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60°and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.展开更多
Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a...Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.展开更多
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.51974187)Intelligent Mine Blasting and Innovative Technology Platform Construction(LJ232410146045)Liaoning Revitalization Talents Program(XLYC2203173).
文摘Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately understood.This study investigates the characteristics and mechanisms of collapse in a shallow buried cross roadway subjected to mining blast disturbances,drawing insights from an engineering project in Anshan City,Northeast China.A strain-softening model based on unified strength theory was developed to effectively calculate and analyze the loosened zone thickness and surrounding rock displacement.The PFC3D-FLAC3D coupling method was employed to clarify the concentrated collapse area within the cross roadway,providing insight into the collapse mechanism through a cross-sectional model of the concentrated region.Results demonstrate that 50%of the cross roadway collapsed following the mining blast.Subsidence at the intersection was approximately one-fifth(0.66 m)of cross roadway’s net height,exceeding subsidence in other areas by 1.3.Under the action of repeated mining blasting,the cross section of the connection roadway forms a semi-elliptical high tensile stress zone.After the cumulative damage of the surrounding rock of the connection roadway exceeds the ultimate yield strength,the cumulative stress release causes the tensile failure of the surrounding rock.The plastic zone of the connecting roadway expands to three times of the initial,and continues to develop.The surrounding rock on both sides experienced tensile stress,cumulative stress release,and the vertical propagation of tensile cracks.
基金supported by the National Natural Science Foundation of China(Nos.U24A2088,42177130,42277174,and 42477166).
文摘As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.
基金supported by the National Natural Science Foundation of China(No.52074296)。
文摘In extremely close-distance coal seam(ECDCS)mining,section coal pillars remain after upper coal seam(UCS)extraction.Thus,for layout and support design of lower coal seam(LCS)mining roadways,it is critical to account for UCS goaf deterioration and residual coal pillar(RCP)-induced stress disturbance.Taking the 6.4 m layer spacing of ECDCS mining in Nanyangpo Coal Mine as a case study,this research aimed to determine the optimal layout and surrounding rock control method for the 24202-ventilation roadway in the RCP area.First,the challenges of roadway layout and support under RCP were clarified:three layout methods face distinct RCPinduced stress disturbances and goaf-related roof damage.A finite element model was established;the second invariant of deviatoric stress(J_(2))and horizontal stress index were introduced to analyze plastic zone and stress evolution after UCS mining.Results show that J_(2)distributes symmetrically,with its peak diffusing downward and attenuating in a“/”-shaped pattern.Six schemes were simulated to compare plastic zone distributions at different positions,revealing that the optimal layout consists of a roadway alignment with the RCP center.Based on roadway layout and roof conditions,a cooperative control scheme was proposed:deep,strong anchorage with long cables across the RCP,and shallow stable support with short bolts in the ECDCS.This scheme secures roof cables anchored to the UCS RCP roof to achieve cross-seam anchorage.On-site borehole peeping and loose circle tests confirm smooth surrounding rock hole walls and limited failure range.Specifically,surrounding rock deformation and roof separation were controlled within 200 mm and 80 mm,respectively,with stable bolt/cable support resistance.These results offer an innovative solution for roadway layout design and support strategies under RCP in ECDCS,with significant engineering application value.
基金supported by the NSFC projects(Nos.52225404,42321002,4204100030)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201911413037)the Excellent Youth Team of the Central Universities of China(No.2023YQTD01).
文摘The axial direction of a roadway often forms a certain spatial angle with the in-situ stress field.Variations in the spatial angles can lead to differences in the stress environment in which the roadway is exposed.Different forms of failure characteristics occur in the roadway.In order to study the failure mechanism with different spatial characteristics,rock-like material specimens with holes in 9 different horizontal and vertical angles were designed.The true triaxial test system was used to carry out the test with the same loading path.The results show that the horizontal angle a and vertical angle β have a significant effect on the specimen strength,specimen rupture angle,and the form of spalling failure in the hole.The spatial angle leads to the formation of asymmetric heterotype V-notches in both sides within the hole.The asymmetry is evident in both the depth and extent of spalling.The strength of the specimen increases and then decreases with increasing vertical angle β.The rupture angle increases and then decreases with increasing horizontal angle a and increases with the increase of the vertical angle β.The stress analytical model of the specimen under three-dimensional compression was established.The distribution of principal stresses around the holes was theoretically analyzed.It is found that the presence of spatial angle changes the distribution of principal stresses around the hole from symmetric to asymmetric distribution.The shift of the principal stresses is responsible for the change from a V-notch to a heterotype V-notch.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
基金supported by the National Natural Science Foundation of China (Grant No.52225404)Beijing Outstanding Young Scientist Program (Grant No.BJJWZYJH01201911413037)Central University Excellent Youth Team Funding Project (Grant No.2023YQTD01).
文摘The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.
基金Australian Research Council,Grant/Award Number:DP210100437National Natural Science Foundation of China,Grant/Award Number:52274102Graduate Research and Innovation Projects of Jiangsu Province,Grant/Award Number:KYCX21_2335。
文摘In order to mitigate the risk of geological disasters induced by fault activation when roadways intersect reverse faults in coal mining,this paper uses a combination of mechanical models with PFC2D software.A mechanical model is introduced to represent various fault angles,followed by a series of PFC2D loading and unloading tests to validate the model and investigate fault instability and crack propagation under different excavation rates and angles.The results show that(1)the theoretical fault model,impacted by roadway advancing,shows a linear reduction in horizontal stress at a rate of-2.01 MPa/m,while vertical stress increases linearly at 4.02 MPa/m.(2)Atfield excavation speeds of 2.4,4.8,7.2,and 9.6 m/day,the vertical loading rates for the model are 2.23,4.47,6.70,and 8.93 Pa/s,respectively.(3)Roadway advancement primarily causes tensile-compressive failures in front of the roadway,with a decrease in tensile cracks as the stress rate increases.(4)An increase in the fault angle leads to denser cracking on the fault plane,with negligible cracking near the fault itself.The dominant crack orientation is approximately 90°,aligned with the vertical stress.
文摘Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.
基金the State Key Research Development Program of China(No.2016YFC0600705)the Fundamental Research Funds for the Central Universities(No.2015XKZD06)+1 种基金the National Natural Science Foundation of China(Nos.51227003,51404250,51504243,51474215,51404262 and 51323004)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20150191 and BK20140213)
文摘The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization.
基金supported by National Key R&D Program of China (No. 2017YFC060300204)Yue Qi Young Scholar Project,CUMTB and Yue Qi Distinguished Scholar Project (No. 800015Z1138)China University of Mining & Technology, Beijing
文摘Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.
基金provided by the National Natural Science Foundation of China (Nos. 51274204 and 51134025)National Key Basic Research Program (No. 2010CB732002)The Ministry of Education Program for New Century Excellent Talents to Support Project of China (No. NCET-12-0965)
文摘Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.
基金National Natural Science Foundation of Surface Project of China(Grant Nos.5177428952074291)+2 种基金The National Natural Science Foundation of the Youth Science Foundation of China(Grant No.51404270)The Fundamental Research Funds for the Central Universities(Grant No.2011QZ06)The Open Fund of State Key Laboratory of Coal Resources in Western China(Grant No.SKLCRKF1903).
文摘Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software.The optimal support parameters of the side rock bolts and anchor cables were subsequently determined,and the support effect of gob-side entry in a mining scenario was verified.The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body,producing a good protective effect on the coal body of the air-intake entry roof and side wall.This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables,which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable.
基金the framework of the research plan:physical and environmental processes in lithosphere induced by anthropogenic activities (AV0Z30860518)
文摘This paper describes the procedures for design of supports and stabilization measures in the roadways.The procedures are based on the system developed in Ostrava-Karvina coal basin in Czech Republic.The calculation of load bearing capacity of roadway supports contains the period of roadway construction and mining in the vicinities,based on the size of the natural rock arch.The loading of supports during mining comes from a stress wave in the rock mass in the forefront of coalface and the caving area of mined-out panel.The input data for the calculation method are deduced according to in-situ measurements of convergence and displacement in the roadways.
基金supported by the National Natural Science Foundation of China (No. 50874103)the National Basic Research Program of China (No. 2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK2008135)as well as by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No. SKLGDUEK0905)
文摘A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application.
基金Innovation and Entrepreneurship Funds of Tiandi Science&Technology Co.Ltd.,Grant/Award Number:2022-2-TD-MS013。
文摘Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.
基金supported by the National Natural Science Foundation of China(Nos.52074296,52004286)the China Postdoctoral Science Foundation(Nos.2020T130701,2019M650895)the Fundamental Research Funds for the Central Universities(Nos.2022YJSNY18,2022XJNY02)。
文摘To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074296,52004286)the China Postdoctoral Science Foundation(Grant Nos.2020T130701,2019M650895).
文摘In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.
基金supported by the National Basic Research Program of China(No.2010CB226805)the National Natural Science Foundation of China(Nos.50874103 and 50974115)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)the State Key Laboratory Fund(No.SKLGDUEK 0905)
文摘We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC^(3D)was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60°and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.
基金provided by the National Natural Science Foundation of China(No.51404256)the National Basic Research Program of China(No.2013CB227900)Fundamental Research Funds for the Central Universities of China(No. 2014QNA51)
文摘Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.