期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
An Ultralytics YOLOv8-Based Approach for Road Detection in Snowy Environments in the Arctic Region of Norway 被引量:2
1
作者 Aqsa Rahim Fuqing Yuan Javad Barabady 《Computers, Materials & Continua》 2025年第6期4411-4428,共18页
In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,par... In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks. 展开更多
关键词 Autonomous vehicles self-driving vehicles road detection snow-covered roads YOLOv8 road detection using segmentation
在线阅读 下载PDF
MGD-YOLO:An Enhanced Road Defect Detection Algorithm Based on Multi-Scale Attention Feature Fusion
2
作者 Zhengji Li Fazhan Xiong +6 位作者 Boyun Huang Meihui Li Xi Xiao Yingrui Ji Jiacheng Xie Aokun Liang Hao Xu 《Computers, Materials & Continua》 2025年第9期5613-5635,共23页
Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance.However,existing vision-based methods often struggle with small,sparse,and low-resolution defects un... Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance.However,existing vision-based methods often struggle with small,sparse,and low-resolution defects under complex road conditions.To address these limitations,we propose Multi-Scale Guided Detection YOLO(MGD-YOLO),a novel lightweight and high-performance object detector built upon You Only Look Once Version 5(YOLOv5).The proposed model integrates three key components:(1)a Multi-Scale Dilated Attention(MSDA)module to enhance semantic feature extraction across varying receptive fields;(2)Depthwise Separable Convolution(DSC)to reduce computational cost and improve model generalization;and(3)a Visual Global Attention Upsampling(VGAU)module that leverages high-level contextual information to refine low-level features for precise localization.Extensive experiments on three public road defect benchmarks demonstrate that MGD-YOLO outperforms state-of-the-art models in both detection accuracy and efficiency.Notably,our model achieves 87.9%accuracy in crack detection,88.3%overall precision on TD-RD dataset,while maintaining fast inference speed and a compact architecture.These results highlight the potential of MGD-YOLO for deployment in real-time,resource-constrained scenarios,paving the way for practical and scalable intelligent road maintenance systems. 展开更多
关键词 YOLO road damage detection object detection computer vision deep learning
在线阅读 下载PDF
A YOLOv11 Empowered Road Defect Detection Model
3
作者 Xubo Liu Yunxiang Liu Peng Luo 《Computers, Materials & Continua》 2025年第10期1073-1094,共22页
Roads inevitably have defects during use,which not only seriously affect their service life but also pose a hidden danger to traffic safety.Existing algorithms for detecting road defects are unsatisfactory in terms of... Roads inevitably have defects during use,which not only seriously affect their service life but also pose a hidden danger to traffic safety.Existing algorithms for detecting road defects are unsatisfactory in terms of accuracy and generalization,so this paper proposes an algorithm based on YOLOv11.The method embeds wavelet transform convolution(WTConv)into the backbone’s C3k2 module to enhance low-frequency feature extraction while avoiding parameter bloat.Secondly,a novel multi-scale fusion diffusion network(MFDN)architecture is designed for the neck to strengthen cross-scale feature interactions,boosting detection precision.In terms of model optimization,the traditional downsampling method is discarded,and the innovative Adown(adaptive downsampling)technique is adopted,which streamlines the parameter scales while effectively mitigating the information loss problem during downsampling.Finally,in this paper,we propose Wise-PIDIoU by combining WiseIoU and MPDIoU to minimize the negative impact of low-quality anchor frames and enhance the detection capability of the model.The experimental results indicate that the proposed algorithm achieves an average detection accuracy of 86.5%for mAP@50 on the RDD2022 dataset,which is 2%higher than the original algorithm while ensuring that the amount of computation is basically unchanged.The number of parameters is reduced by 17%,and the F1 score is improved by 3%,showing better detection performance than other algorithms when facing different types of defects.The excellent performance on embedded devices proves that the algorithm also has favorable application prospects in practical inspection. 展开更多
关键词 Deep learning road defect detection YOLOv11 wavelet transform convolution
在线阅读 下载PDF
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
4
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Improved lightweight road damage detection based on YOLOv5
5
作者 LIU Chang SUN Yu +2 位作者 CHEN Jin YANG Jing WANG Fengchao 《Optoelectronics Letters》 2025年第5期314-320,共7页
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize... There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms. 展开更多
关键词 road surface damage detection convolutional neural network feature maps convolutional neural network cnn lightweight model yolov improved lightweight model spatial pyram
原文传递
Automation in road distress detection,diagnosis and treatment 被引量:2
6
作者 Xu Yang Jianqi Zhang +3 位作者 Wenbo Liu Jiayu Jing Hao Zheng Wei Xu 《Journal of Road Engineering》 2024年第1期1-26,共26页
Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emerge... Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved. 展开更多
关键词 road detection road diagnosis road treatment Deep learning Intelligent maintenance
在线阅读 下载PDF
Investigation of Attention Mechanism-Enhanced Method for the Detection of Pavement Cracks
7
作者 Tao Jin Siqi Gu +2 位作者 Zhekun Shou Hong Shi Min Zhang 《Structural Durability & Health Monitoring》 2025年第4期903-918,共16页
The traditional You Only Look Once(YOLO)series network models often fail to extract satisfactory features for road detection,due to the limited number of defect images in the dataset.Additionally,most open-source road... The traditional You Only Look Once(YOLO)series network models often fail to extract satisfactory features for road detection,due to the limited number of defect images in the dataset.Additionally,most open-source road crack datasets contain idealized cracks that are not suitable for detecting early-stage pavement cracks with fine widths and subtle features.To address these issues,this study collected a large number of original road surface images using road detection vehicles.A large-capacity crack dataset was then constructed,with various shapes of cracks categorized as either cracks or fractures.To improve the training performance of the YOLOv5 algorithm,which showed unsatisfactory results on the original dataset,this study used median filtering to preprocess the crack images.The preprocessed images were combined to form the training set.Moreover,the Coordinate Attention(CA)attention module was integrated to further enhance the model’s training performance.The final detection model achieved a recognition accuracy of 88.9%and a recall rate of 86.1%for detecting cracks.These findings demonstrate that the use of image preprocessing technology and the introduction of the CA attention mechanism can effectively detect early-stage pavement cracks that have low contrast with the background. 展开更多
关键词 road detection vehicle pavement crack detection deep learning attention mechanism
在线阅读 下载PDF
Optimized Binary Neural Networks for Road Anomaly Detection:A TinyML Approach on Edge Devices
8
作者 Amna Khatoon Weixing Wang +2 位作者 Asad Ullah Limin Li Mengfei Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期527-546,共20页
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N... Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks. 展开更多
关键词 Edge computing remote sensing TinyML optimization BNNs road anomaly detection QUANTIZATION model compression
在线阅读 下载PDF
A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos
9
作者 Sarfaraz Natha Fareed A.Jokhio +4 位作者 Mehwish Laghari Mohammad Siraj Saif A.Alsaif Usman Ashraf Asghar Ali 《Computers, Materials & Continua》 SCIE EI 2024年第12期3707-3729,共23页
Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure.Close Circuits Television(CCTV)Cameras are used to surveillance and monitor the normal and anomalous i... Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure.Close Circuits Television(CCTV)Cameras are used to surveillance and monitor the normal and anomalous incidents.Real-world anomaly detection is a significant challenge due to its complex and diverse nature.It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems,and the need for automated techniques has been raised to enhance detection accuracy.This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack Ensemble Road Anomaly Detection(SERAD).SERAD is used to detect and classify the four most happening road anomalies,such as accidents,car fires,fighting,and snatching,through road surveillance videos with high accuracy.The SERAD adapted three pre-trained Convolutional Neural Networks(CNNs)models,namely VGG19,ResNet50 and InceptionV3.The stacking technique is employed to incorporate these three models,resulting in much-improved accuracy for classifying road abnormalities compared to individual models.Additionally,it presented a custom real-world Road Anomaly Dataset(RAD)comprising a comprehensive collection of road images and videos.The experimental results demonstrate the strength and reliability of the proposed SERAD model,achieving an impressive classification accuracy of 98.7%.The results indicate that the proposed SERAD model outperforms than the individual CNN base models. 展开更多
关键词 Convolutional neural network transfer learning stack ensemble learning road anomaly detection data augmentation
在线阅读 下载PDF
A Fast Automatic Road Crack Segmentation Method Based on Deep Learning with Model Compression Framework
10
作者 Minggang Xu Chong Li +4 位作者 Xiangli Kong Yuming Wu Zhixiang Lu Jionglong Su Zhun Fan 《Journal of Beijing Institute of Technology》 2025年第4期388-404,共17页
Computer-vision and deep-learning techniques are widely applied to detect,monitor,and assess pavement conditions including road crack detection.Traditional methods fail to achieve satisfactory accuracy and generalizat... Computer-vision and deep-learning techniques are widely applied to detect,monitor,and assess pavement conditions including road crack detection.Traditional methods fail to achieve satisfactory accuracy and generalization performance in for crack detection.Complex network model can generate redundant feature maps and computational complexity.Therefore,this paper proposes a novel model compression framework based on deep learning to detect road cracks,which can improve the detection efficiency and accuracy.A distillation loss function is proposed to compress the teacher model,followed by channel pruning.Meanwhile,a multi-dilation model is proposed to improve the accuracy of the model pruned.The proposed method is tested on the public database CrackForest dataset(CFD).The experimental results show that the proposed method is more efficient and accurate than other state-of-art methods. 展开更多
关键词 automatic road crack detection deep learning U-net DISTILLATION channel pruning multi-dilation model
在线阅读 下载PDF
Review of advanced road materials, structures, equipment, and detection technologies 被引量:9
11
作者 JRE Editorial Office Maria Chiara Cavalli +37 位作者 De Chen Qian Chen Yu Chen Augusto Cannone Falchetto Mingjing Fang Hairong Gu Zhenqiang Han Zijian He Jing Hu Yue Huang Wei Jiang Xuan Li Chaochao Liu Pengfei Liu Quantao Liu Guoyang Lu Yuan Ma Lily Poulikakos Jinsong Qian Aimin Sha Liyan Shan Zheng Tong B.Shane Underwood Chao Wang Chaohui Wang Di Wang Haopeng Wang Xuebin Wang Chengwei Xing Xinxin Xu Min Ye Huanan Yu Huayang Yu Zhe Zeng You Zhan Fan Zhang Henglong Zhang Wenfeng Zhu 《Journal of Road Engineering》 2023年第4期370-468,共99页
As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,... As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies. 展开更多
关键词 road engineering Advanced road material Advanced road structure Advanced road equipment Advanced road detection technology
在线阅读 下载PDF
Road model prediction based unstructured road detection 被引量:1
12
作者 Wen-hui ZUO Tuo-zhong YAO 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第11期822-834,共13页
Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the... Vision-based road detection is an important research topic in different areas of computer vision such as the autonomous navigation of mobile robots.In outdoor unstructured environments such as villages and deserts,the roads are usually not well-paved and have variant colors or texture distributions.Traditional region- or edge-based approaches,however,are effective only in specific environments,and most of them have weak adaptability to varying road types and appearances.In this paper we describe a novel top-down based hybrid algorithm which properly combines both region and edge cues from the images.The main difference between our proposed algorithm and previous ones is that,before road detection,an off-line scene classifier is efficiently learned by both low- and high-level image cues to predict the unstructured road model.This scene classification can be considered a decision process which guides the selection of the optimal solution from region- or edge-based approaches to detect the road.Moreover,a temporal smoothing mechanism is incorporated,which further makes both model prediction and region classification more stable.Experimental results demonstrate that compared with traditional region- and edge-based algorithms,our algorithm is more robust in detecting the road areas with diverse road types and varying appearances in unstructured conditions. 展开更多
关键词 road detection Surface layout road model prediction Temporal smoothing
原文传递
Road Damage Detection and Classification Using Mask R-CNN with DenseNet Backbone 被引量:3
13
作者 Qiqiang Chen Xinxin Gan +2 位作者 Wei Huang Jingjing Feng H.Shim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2201-2215,共15页
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.... Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods. 展开更多
关键词 road damage detection road damage classification Mask R-CNN framework densely connected network
在线阅读 下载PDF
Semantic Segmentation-Based Road Marking Detection Using Around View Monitoring System 被引量:1
14
作者 XU Hanqing YANG Ming +4 位作者 DENG Liuyuan LI Hao WANG Chunxiang HAN Weibin YU Yuelong 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第6期833-843,共11页
Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising sin... Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising since they can generalize detection result well under complicated environments and hold rich pixel-level semantic information.Nevertheless,the previous methods mostly study the training process of the segmentation network,while omitting the time cost of manually annotating pixel-level data.Besides,the pixel-level semantic segmentation results need to be fitted into more reliable and compact models so that geometrical information of road markings can be explicitly obtained.In order to tackle the above problems,this paper describes a semantic segmentation-based road marking detection method using around view monitoring system.A semiautomatic semantic annotation platform is developed,which exploits an auxiliary segmentation graph to speed up the annotation process while guaranteeing the annotation accuracy.A segmentation-based detection module is also described,which models the semantic segmentation results for the more robust and compact analysis.The proposed detection module is composed of three parts:vote-based segmentation fusion filtering,graph-based road marking clustering,and road-marking fitting.Experiments under various scenarios show that the semantic segmentation-based detection method can achieve accurate,robust,and real-time detection performance. 展开更多
关键词 autonomous driving semantic segmentation road marking detection
原文传递
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
15
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
在线阅读 下载PDF
Research on Infrared Image Fusion Technology Based on Road Crack Detection
16
作者 Guangjun Li Lin Nan +3 位作者 Lu Zhang Manman Feng Yan Liu Xu Meng 《Journal of World Architecture》 2023年第3期21-26,共6页
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr... This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection. 展开更多
关键词 road crack detection Infrared image fusion technology detection quality
在线阅读 下载PDF
Application of UAV in Road Safety in Intelligent Areas 被引量:1
17
作者 Yanan Xu Jianxin Qin +1 位作者 Pengcheng He Zhuan Chen 《Journal of Geographical Research》 2019年第4期15-21,共7页
With the continuous development of remote sensing(RS)technology,the surface information can be collected conveniently and quickly by using the popular unmanned aerial vehicle(UAV).The application of UAV low altitude R... With the continuous development of remote sensing(RS)technology,the surface information can be collected conveniently and quickly by using the popular unmanned aerial vehicle(UAV).The application of UAV low altitude RS technology in road safety in intelligent area has certain practical significance.It can provide safety warning for most drivers,and provide auxiliary decision-making for the road supervision department.Through the collection,processing,calculation and analysis of the road image,the UAV can find out the road obstacles with potential safety hazards,identify the road pit,calculate the radius and depth of the road pit through the digital mapping system,predict the accident risk according to different speed and provide scientific basis for the road safety monitoring.At the same time,UAV can provide repair scheme for damaged roads,estimate the quantity of materials needed for repair,and achieve the target of resource saving and efficiency improvement.The experimental results show that the UAV can not only provide scientific prediction information for driving safety,but also provide relatively accurate material consumption for road repair. 展开更多
关键词 UAV Low-altitude RS technology road safety road repair road detection
在线阅读 下载PDF
A Novel Dark and Light Primary Color Prior Theory for Road Visibility Detection
18
作者 Yuankun Du Fengping Liu 《IJLAI Transactions on Science and Engineering》 2025年第1期72-77,共6页
Aiming at the problems of high complexity and low accuracy of existing visibility detection methods,a road visibility detection method based on monitoring images is proposed.Firstly,the transmittance of dark and brigh... Aiming at the problems of high complexity and low accuracy of existing visibility detection methods,a road visibility detection method based on monitoring images is proposed.Firstly,the transmittance of dark and bright primary colors is obtained by the theory of dark and bright primary color prior.Then,the atmospheric light value and atmospheric transmittance are optimized by using adaptive fog removal weight and adaptive filtering window,and the transmittance of the first and last end points of the lane line is one-toone corresponding to the optimized dark and bright primary transmittance.Finally,the atmospheric extinction coefficient and visibility are calculated by combining the distance between the end and end of the lane line.The experimental results show that this method can achieve high precision detection within 100-600m,and the relative error is less than 10%.Compared with other methods,the detection efficiency of this method is faster,the accuracy is higher and the realization is easier. 展开更多
关键词 road visibility detection Atmospheric light value Atmospheric extinc
在线阅读 下载PDF
SPD-YOLO:A Novel Lightweight YOLO Modelfor Road Information Detection
19
作者 Guoliang Li Xianxin Ke +1 位作者 Tao Xue Xiangyu Liao 《Journal of Beijing Institute of Technology》 2025年第5期482-495,共14页
Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes... Rapid and high-precision speed bump detection is critical for autonomous driving and road safety,yet it faces challenges from non-standard appearances and complex environments.To address this issue,this study proposes a you only look once(YOLO)algorithm for speed bump detection(SPD-YOLO),a lightweight model based on YOLO11s that integrates three core innova-tive modules to balance detection precision and computational efficiency:it replaces YOLO11s’original backbone with StarNet,which uses‘star operations’to map features into high-dimensional nonlinear spaces for enhanced feature representation while maintaining computational efficiency;its neck incorporates context feature calibration(CFC)and spatial feature calibration(SFC)to improve detection performance without significant computational overhead;and its detection head adopts a lightweight shared convolutional detection(LSCD)structure combined with GroupNorm,minimizing computational complexity while preserving multi-scale feature fusion efficacy.Experi-ments on a custom speed bump dataset show SPD-YOLO achieves a mean average precision(mAP)of 79.9%,surpassing YOLO11s by 1.3%and YOLO12s by 1.2%while reducing parameters by 26.3%and floating-point operations per second(FLOPs)by 29.5%,enabling real-time deploy-ment on resource-constrained platforms. 展开更多
关键词 lightweight object detection road speed bump detection YOLO11 algorithm
在线阅读 下载PDF
完全残差连接与多尺度特征融合遥感图像分割 被引量:19
20
作者 张小娟 汪西莉 《遥感学报》 EI CSCD 北大核心 2020年第9期1120-1133,共14页
遥感图像数据规模大,光照、遮挡等情况复杂,目标密集、尺度不一以及缺乏大量带标注图像用于训练深度网络等特点对遥感图像分割的完整性和正确性造成了更大的挑战。针对深度卷积网络中因多次卷积造成分辨率显著下降,像素类别预测精度降... 遥感图像数据规模大,光照、遮挡等情况复杂,目标密集、尺度不一以及缺乏大量带标注图像用于训练深度网络等特点对遥感图像分割的完整性和正确性造成了更大的挑战。针对深度卷积网络中因多次卷积造成分辨率显著下降,像素类别预测精度降低的问题,本文在深度卷积编码-解码网络的基础上设计了一个采用完全残差连接和多尺度特征融合的端到端遥感图像分割模型。该模型具有两方面优点:首先,长距离和短距离的完全残差连接既简化了深层网络的训练,又为本层末端融入了原始输入信息,增强了特征融合。其次,不同尺度和方式的特征融合使网络能够提取丰富的上下文信息,应对目标尺度变化,提升分割性能。本文通过对ISPRS Vaihingen和Road Detection数据集做数据扩充并进行实验,分别从平均IOU、平均F1值两方面对模型进行评价。通过与目前先进的模型以及文献中的研究成果进行比较,结果表明本文所提模型优于对比模型,在两个数据集上的平均IOU分别达到了85%和84%,平均F1值分别达到了92%和93%,能够有效提高遥感图像目标分割的完整性和正确性。 展开更多
关键词 遥感图像分割 深度卷积神经网络 完全残差连接 多尺度特征融合 ISPRS Vaihingen数据集 road detection数据集
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部