期刊文献+
共找到30,470篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation and Optimization of Coupling Dynamic Response of Steel Catenary Riser for a Semi-Submersible Platform Under Harsh Conditions in the South China Sea 被引量:1
1
作者 YIN Qi-shuai YAN Xin-ye +6 位作者 ZHU Hong CHEN Ke-jin YANG Jin LIU Lu-yao GAO Bing-zhen GUO Ying-ying MA Yong-qi 《China Ocean Engineering》 2025年第5期917-927,共11页
Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on it... Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on its dynamic analysis and structural design.This study investigates a deep-sea oil and gas field by developing a coupled model of a semi-submersible platform and steel catenary riser to analyze it mechanical behavior under extreme marine condi-tions.Through multi-objective optimization methodology,the study compares and analyzes suspension point tension and touchdown point stress under various conditions by modifying the suspension position,suspension angle,and catenary length.The optimal configuration parameters were determined:a suspension angle of 12°,suspension position in the southwest direction of the column,and a catenary length of approximately 2000 m.These findings elucidate the impact of configuration parameters on riser dynamic response and establish reasonable parameter layout ranges for adverse sea conditions,offering valuable optimization strategies for steel catenary riser deployment in domestic deep-sea oil and gas fields. 展开更多
关键词 steel catenary riser(SCR) multi-objective optimization riser configuration parameters harsh condi-tions dynamic analysis South China Sea
在线阅读 下载PDF
Investigation on Fatigue Damage of Offshore Risers Due to Slug-Induced Vibrations Based on Arbitrary Lagrangian-Eulerian(ALE)-Absolute Nodal Coordinate Formulation(ANCF) 被引量:1
2
作者 LIU De-peng ZHANG Yu AI Shang-mao 《China Ocean Engineering》 2025年第5期941-955,共15页
This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the A... This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments. 展开更多
关键词 slug flow offshore riser fatigue damage dynamic analysis
在线阅读 下载PDF
Experimental Investigation of the Slug-Induced Vibration of a Flexible Catenary Riser at Variable Gas-Liquid Ratios and Mixture Velocities 被引量:1
3
作者 GAO Yue ZHU Hong-jun +2 位作者 XU Bing WANG Min-hao ZHOU Mai 《China Ocean Engineering》 2025年第5期839-854,共16页
An experimental analysis of the slug-induced vibration(SIV)of a flexible catenary riser with an aspect ratio of 130 is reported in this work.The vibration responses and internal slug flow details at different gas-liqu... An experimental analysis of the slug-induced vibration(SIV)of a flexible catenary riser with an aspect ratio of 130 is reported in this work.The vibration responses and internal slug flow details at different gas-liquid ratios(Q_(g)/Q_(l))and mixture velocities(vm)are non-intrusively and simultaneously captured by high-speed cameras.Both the in-plane and out-of-plane responses of the catenary riser are excited in all considered cases.The slug flow characteristics,including translational velocities,slug lengths,recurrence frequencies,and pressure variations,are analyzed and dis-cussed,as are the dynamic responses of the riser in terms of the amplitudes,space-varying frequency,and modal weight.The dominant modal response based on the root-mean-square amplitude profiles does not match that based on the dominant frequency.Three mode switching types are identified based on the RMS amplitude profiles and the dominant frequency.When vm is small,no mode switching(NMS)is observed in either the in-plane or out-of-plane responses.For mode switching I(MS I),the switching between the first and second modes in the in-plane response is induced by slug flow with different recurrence frequencies in cases of large Q_(g)/Q_(l).However,there is no mode switching in the out-of-plane response.The switching between the first and third modes for the in-plane response and the second and fourth modes for the out-of-plane response(MS II)occurs in cases of relatively high vm and low Q_(g)/Q_(l). 展开更多
关键词 slug-induced vibration slug characteristics mode switching flexible catenary riser
在线阅读 下载PDF
Adaptive Vibration Control of Flexible Marine Riser with Internal Flow Coupling 被引量:1
4
作者 ZHOU Li WANG Guo-rong +1 位作者 WAN Min ZHONG Lin 《China Ocean Engineering》 2025年第5期928-940,共13页
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham... This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods. 展开更多
关键词 flexible marine riser internal flow adaptive control fuzzy logic system vibration control
在线阅读 下载PDF
Data-Driven Prediction of Maximum Displacement of Flexible Riser Based on Movement of Platform 被引量:1
5
作者 SONG Jin-ze WU Yu-ze +3 位作者 HE Yu-fa ZHOU Shui-gen ZHU Hong-jun DENG Kai-rui 《China Ocean Engineering》 2025年第5期793-805,共13页
Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate predictio... Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate prediction of displacement and position of VIV in flexible risers remains challenging under actual marine conditions.This study presents a data-driven model for riser displacement prediction that corresponds to field conditions.Experimental data analysis reveals that the XGBoost algorithm predicts the maximum displacement and position with superior accuracy compared with Support vector regression(SVR),considering both computational efficiency and precision.Platform displacement in the Y-direction demonstrates a significant positive correlation with both axial depth and maximum displacement magnitude.The fourth point displacement exhibits the highest contribution to model prediction outcomes,showing a positive influence on maximum displacement while negatively affecting the axial depth of maximum displacement.Platform displacement in the X-and Y-directions exhibits competitive effects on both the riser’s maximum displacement and its axial depth.Through the implementation of XGBoost algorithm and SHapley Additive exPlanation(SHAP)analysis,the model effectively estimates the riser’s maximum displacement and its precise location.This data-driven approach achieves predictions using minimal,readily available data points,enhancing its practical field applications and demonstrating clear relevance to academic and professional communities. 展开更多
关键词 data-driven method flexible riser vortex-induced vibration(VIV) platform displacement
在线阅读 下载PDF
Study on the Carcass Layer Multi-Pass Roll Forming of Deepwater Flexible Risers 被引量:1
6
作者 LU Hai-long LI Wen-bo +2 位作者 YAN Jun ZHANG Heng-rui YANG Zhi-xun 《China Ocean Engineering》 2025年第5期866-877,共12页
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a... The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers. 展开更多
关键词 flexible riser carcass layer multi-pass roll forming finite element analysis residual stress
在线阅读 下载PDF
Vortex-Induced Vibration Response Characteristics of Deep-Sea Mining Risers Considering Abrasion Damage 被引量:1
7
作者 LIU Yu WANG Chang-zi +1 位作者 JIANG Yu-feng ZHU Yan 《China Ocean Engineering》 2025年第5期806-821,共16页
A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion... A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations. 展开更多
关键词 deep-sea mining riser vortex-induced vibration(VIV) response characteristics abrasion damage effective tension
在线阅读 下载PDF
Nonlinear Dynamic Modeling of Steel Catenary Risers with Varying Curvatures Under Internal Flow and External Current Excitation 被引量:1
8
作者 LI Fang-qiu CHENG Hao +4 位作者 LIU Miao-er LI Xin-xin AN Chen LU Hai-long LU Zhao-kuan 《China Ocean Engineering》 2025年第5期904-916,共13页
As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.Thi... As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.This work establishes a dynamic behavior model of steel catenary risers(SCRs)with varying curvatures subjected to internal flow and external currents and considers the effects of pipe-soil interactions on the curvature profile.The governing equation is solved via the generalized integral transform technique(GITT),which yields a semi-analytical solution of a high-order nonlinear partial differential equation.Parametric studies are then performed to analyze the effects of varying curvature on the vibration frequency and amplitude of SCRs.The vibration frequency and amplitude increase with the touchdown angle and hang-off angle,although the effect of the hang-off angle is negligible.Additionally,as the curvature increases along the centerline axis,the position of the maximum amplitude of the SCR moves upward. 展开更多
关键词 steel catenary riser(SCR) CURVATURE generalized integral transform technique(GITT) dynamic behav-ior internal flow and external current
在线阅读 下载PDF
Intelligent path planning for small modular reactors based on improved reinforcement learning
9
作者 DONG Yun-Feng ZHOU Wei-Zheng +1 位作者 WANG Zhe-Zheng ZHANG Xiao 《四川大学学报(自然科学版)》 北大核心 2025年第4期1006-1014,共9页
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous... Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future. 展开更多
关键词 Small modular reactor Operating condition recognition Path planning Reinforcement learning
在线阅读 下载PDF
A composite controller for reactor core combining artificial neural network and fractional-order PID controller
10
作者 WANG Zhe-Zheng ZHANG Xiao DENG Ke 《四川大学学报(自然科学版)》 北大核心 2025年第4期1015-1024,共10页
Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge i... Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller. 展开更多
关键词 Nuclear reactor Core power Fractional PID controller Artificial neural network
在线阅读 下载PDF
Knowledge Maps from Scientometric Review on Composite Marine Risers
11
作者 Chiemela Victor Amaechi Ahmed Reda +8 位作者 Salmia Binti Beddu Daud Bin Mohamed Agusril Syamsir Idris Ahmed Ja’e Bo Huang Chunguang Wang Xuanze Ju Jelson Cassavela Abiodun Kolawole Oyetunji 《Sustainable Marine Structures》 2025年第1期1-20,共20页
With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the resea... With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend. 展开更多
关键词 Composite risers Marine risers Marine Structure Scientometric Review Bibliometric Analysis Composite Material Knowledge Map
在线阅读 下载PDF
Ambient CO_(2) Capture and Valorization Enabled by Tandem Electrolysis Using Solid-State Electrolyte Reactor
12
作者 Yan-Bo Hua Bao-Xin Ni Kun Jiang 《电化学(中英文)》 北大核心 2025年第6期38-50,共13页
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten... Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community. 展开更多
关键词 ELECTROCATALYSIS ELECTROLYSIS CO_(2)capture CO_(2)reduction Solid-state electrolyte reactor
在线阅读 下载PDF
Validation and application of a coupled xenon-transport and reactor dynamic model of Molten-salt reactor experiment
13
作者 Jia-Qi Chen Caleb S.Brooks 《Nuclear Science and Techniques》 2025年第6期156-175,共20页
Liquid-fueled molten-salt reactors have dynamic features that distinguish them from solid-fueled reactors,such that conventional system-analysis codes are not directly applicable.In this study,a coupled dynamic model ... Liquid-fueled molten-salt reactors have dynamic features that distinguish them from solid-fueled reactors,such that conventional system-analysis codes are not directly applicable.In this study,a coupled dynamic model of the Molten-Salt Reactor Experiment(MSRE)is developed.The coupled model includes the neutronics and single-phase thermal-hydraulics modeling of the reactor and validated xenon-transport modeling from previous studies.The coupled dynamic model is validated against the frequency-response and transient-response data from the MSRE.The validated model is then applied to study the effects of xenon and void transport on the dynamic behaviors of the reactor.Plant responses during the unique initiating events such as off-gas system blockages and loss of circulating voids are investigated. 展开更多
关键词 Nuclear-reactor dynamics Molten-salt reactor experiment Frequency response Molten-salt reactor XENON
在线阅读 下载PDF
Pressure characterization study in the jet influence zone of riser based on HHT analysis
14
作者 Zhi-Hang Zheng Jun-Nan Ma +1 位作者 Zi-Han Yan Chun-Xi Lu 《Petroleum Science》 2025年第7期3056-3067,共12页
By large-scale cold mold experiments,pressure pulsation signals within the jet influence zone of riser reactor are processed by using Hilbert-Huang analysis(HHT)in this study.Effects of different jet forms and operati... By large-scale cold mold experiments,pressure pulsation signals within the jet influence zone of riser reactor are processed by using Hilbert-Huang analysis(HHT)in this study.Effects of different jet forms and operating conditions on the intrinsic mode function(IMF)energy and Hilbert-Huang spectrum are compared.Results show that the IMF energy and Hilbert-Huang spectrum of pressure pulsation signals show significant differences under the influence of upward and downward jets.Moreover,the change of jet velocity will also lead to significant changes in IMF energy and Hilbert-Huang spectrum.Among them,energy values and energy proportions corresponding to high-frequency pressure pulsations show a good correlation with the jet velocity.On this basis,energy value and energy proportion data in the high frequency range of the original pressure signal are clustered and analyzed by using the K-means clustering algorithm.Based on clustering results,the jet influence zone of riser can be defined into three regions.From partitioning results,it is found that the introduction of downward inclined jets could effectively improve the gas-solid mixing in the feed injection zone of riser. 展开更多
关键词 Fluidized bed riser Jet influence zone Pressure pulsation Hilbert-Huang transform Distribution
原文传递
Dynamic Response Analyses and Experimental Research into Deep-Sea Mining Systems Based on Flexible Risers
15
作者 Jianyu Xiao Zhuang Kang +3 位作者 Ming Chen Yijun Shen Yanlian Du Jing Leng 《哈尔滨工程大学学报(英文版)》 2025年第4期789-804,共16页
The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich i... The deep seabed is known for its abundant reserves of various mineral resources.Notably,the Clarion Clipperton(C-C)mining area in the northeast Pacific Ocean,where China holds exploration rights,is particularly rich in deep-sea polymetallic nodules.These nodules,which are nodular and unevenly distributed in seafloor sediments,have significant industrial exploitation value.Over the decades,the deep-sea mining industry has increasingly adopted systems that combine rigid and flexible risers supported by large surface mining vessels.However,current systems face economic and structural stability challenges,hindering the development of deep-sea mining technology.This paper proposes a new structural design for a deep-sea mining system based on flexible risers,validated through numerical simulations and experimental research.The system composition,function and operational characteristics are comprehensively introduced.Detailed calculations determine the production capacity of the deep-sea mining system and the dimensions of the seabed mining subsystem.Finite element numerical simulations analyze the morphological changes of flexible risers and the stress conditions at key connection points under different ocean current incident angles.Experimental research verifies the feasibility of collaborative movement between two tethered underwater devices.The proposed deep-sea mining system,utilizing flexible risers,significantly advances the establishment of a commercial deep-sea mining system.The production calculations and parameter determinations provide essential references for the system’s future detailed design.Furthermore,the finite element simulation model established in this paper provides a research basis,and the method established in this paper offers a foundation for subsequent research under more complex ocean conditions.The control strategy for the collaborative movement between two tethered underwater devices provides an effective solution for deep-sea mining control systems. 展开更多
关键词 Deep-sea mining Flexible riser Underwater mineral resources Dynamic response analyses Collaborative movement
在线阅读 下载PDF
Numerical simulation of vortex-induced vibration of deepwater drilling riser based on discrete vortex method
16
作者 Yan-Bin Wang Hong-Chuan Zhao +1 位作者 De-Li Gao Rui Li 《Petroleum Science》 2025年第5期2042-2061,共20页
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f... Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser. 展开更多
关键词 Deepwater drilling riser Vortex-induced vibration Discrete vortex method Numerical simulation VIV suppression
原文传递
Uncertainty and sensibility analysis of loss-of-forced-cooling accidents for 150-MWt molten salt reactors
17
作者 Kai Wang Chao-Qun Wang +2 位作者 Qun Yang Zhao-Zhong He Na-Xiu Wang 《Nuclear Science and Techniques》 2025年第6期228-239,共12页
Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise ... Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified. 展开更多
关键词 Molten salt reactor LOFC Uncertainty analysis Sensibility analysis
在线阅读 下载PDF
Microfluidic reactors for paired electrosynthesis:Fundamentals,applications and future prospects
18
作者 Hao Xue Zhi-Hao Zhao +1 位作者 Menglei Yuan Guangjin Zhang 《Green Energy & Environment》 2025年第3期471-499,共29页
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still... Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies. 展开更多
关键词 Paired electrosynthesis Microfluidic reactor Laminar flow Scaling-up strategy
在线阅读 下载PDF
Ray-tracing analysis of Doppler backscattering diagnostic for tokamak with reactor technologies
19
作者 Alexander YASHIN Anna PONOMARENKO +1 位作者 Arseny TOKAREV Eugeniy KISELEV 《Plasma Science and Technology》 2025年第5期72-80,共9页
This study discusses the scope of application of the Doppler backscattering(DBS)diagnostic for the tokamak with reactor technologies(TRT)project.This involved numerical modeling of the three-dimensional(3D)beam trajec... This study discusses the scope of application of the Doppler backscattering(DBS)diagnostic for the tokamak with reactor technologies(TRT)project.This involved numerical modeling of the three-dimensional(3D)beam trajectories.Calculations were performed to investigate the propagation of microwaves in the V(40–75 GHz)and W(75–110 GHz)frequency ranges with O-mode polarization for the density profile of the base TRT scenario.Our analysis showed that the DBS system antenna on the TRT would need to be tilted in both the poloidal and toroidal directions in order to meet the condition Kperp/Kpar<10%..For the DBS system located in the equatorial plane it was shown that a wide range of poloidal and toroidal angles is available for the successful implementation of the diagnostic to study the core,pedestal and scrape-off layer(SOL)regions.The DBS system located at 35 cm above the equatorial plane would be more limited in measurements only covering the SOL and pedestal regions.A shift of the cut-offs in the toroidal direction highlighted the need for 3D analysis of the DBS data. 展开更多
关键词 plasma diagnostics Doppler backscattering Doppler reflectometry reactor tokamak TRT
在线阅读 下载PDF
Multi-stage and multi-objective optimization of anti-typhoon evacuation strategy for riser with new hang-off system
20
作者 Yan-Wei Li Xiu-Quan Liu +3 位作者 Peng-Ji Hu Xiao-Yu Hu Yuan-Jiang Chang Guo-Ming Chen 《Petroleum Science》 2025年第1期457-471,共15页
A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and metho... A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects. 展开更多
关键词 Anti-typhoon evacuation strategy riser Multi-stage and multi-objective Optimization Genetic algorithm Least square method
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部