The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The result...The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.展开更多
Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid...Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.展开更多
Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chir...Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chiral diphosphine was proved to be effective at enantioselective copolymerization. Optical rotation, elemental analysis, H-1, C-13-NMR and IR spectra showed that the copolymer was optically active, isotactic, alternating poly(1,4-ketone) structure.展开更多
The preparing methods, choice of catalysts and reaction kinetics of one of the monomers, diesteramide(DEA), of polyester-amides were investigated in details. The chemical structure of DEA was analyzed. And the Polyest...The preparing methods, choice of catalysts and reaction kinetics of one of the monomers, diesteramide(DEA), of polyester-amides were investigated in details. The chemical structure of DEA was analyzed. And the Polyester-amides (PEA) were obtained by melt copolymerization with DEA. It is shown that DEA can be synthesized by DMT and hexamethylene diamine with the catalyst EX - 1 or EX - 2. The relationship between reaction rate of synthesizing monomer and concentration of hexamethylene diamine is first order kinetic relation.展开更多
From the self-assembly of the typical Salen-type Schiff-base ligand H2L and Zn(OAc)2.2H20 in the molar ratio of 1:1 or 1:2, the mononuclear [Zn(L)(H2O)] (1) or binuclear [Zn2(L)(OAc)2(H2O)] (2) are o...From the self-assembly of the typical Salen-type Schiff-base ligand H2L and Zn(OAc)2.2H20 in the molar ratio of 1:1 or 1:2, the mononuclear [Zn(L)(H2O)] (1) or binuclear [Zn2(L)(OAc)2(H2O)] (2) are obtained, respectively. For both complexes 1 and 2, the unsaturated five-coordinate coordination environment to the catalytic active centers (Zn2+ ions) permits the monomer insertion for the effective solution copolymerization of cyclohexene oxide and maleic anhydride. All the solution copolymerizations afford poly(ester-co-ether)s, while lower catalyst and co-catalyst concentrations are helpful for the formation of alternating polyester. Of the three co-catalysts, 4-(dimethylamino)pyridine is found to be the most efficient, while an excess thereof is detrimental for chain growth of the copolymers.展开更多
Isothiourea is an important class of sulfur-containing molecules showing unique catalytic and biological activities. As such,polyisothiourea is envisioned to be an interesting type of polymer that potentially exhibits...Isothiourea is an important class of sulfur-containing molecules showing unique catalytic and biological activities. As such,polyisothiourea is envisioned to be an interesting type of polymer that potentially exhibits a number of interesting properties. However, there is no access to synthesizing well-defined polyisothiourea, and currently isothiourea-containing polymers are mainly prepared by immobilizing onto other polymer's side chain. Herein, we report the first facile synthesis of polyisothioureas via alternating copolymerization of aziridines and isothiocayanates. Mediated by the catalytic system of phosphazene superbases/alcohol, a broad scope of aziridines and isothiocayanates could be transformed into polyisothioureas with adjustable substitutions(11 examples). The structures of obtained polyisothioureas were fully characterized with ^(1)H-NMR, ^(13)C-NMR, and ^(1)H-^(13)C HMBC NMR. Moreover, the polyisothioureas show tunable thermal properties depending on substitutions on the isothiourea linkages. The novel structure of these polyisothioureas will enable a powerful platform for the discovery of nextgeneration functional plastics.展开更多
The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization condi...The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. The copolymerization procedure was tracked by ^1H NMR analyses.展开更多
The alternating copolymerization of hydroxyalkyl vinyl ethers and dialkyl maleates is investigated by conventional radical polymerization and reversible addition-fragmentation chain transfer polymerization(RAFT).The i...The alternating copolymerization of hydroxyalkyl vinyl ethers and dialkyl maleates is investigated by conventional radical polymerization and reversible addition-fragmentation chain transfer polymerization(RAFT).The influence of comonomer structure,comonomer feeding ratios,and monomer concentrations on the copolymerization and the copolymer structure have been investigated systematically.With 2-hydroxyethyl vinyl ether(HEVE)and dimethyl maleates(DMM)as comonomers,a well-defined alternating copolymer is prepared with M_(n)=3400 and M_(w)/M_(n)=1.93 up to 71.6% monomer.The alternating sequential chain structure of the copolymers has been proved by both NMR and matrixassisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS).The experimental reactivity ratios and theoretical calculated highest occupied molecular orbital and the lowest unoccupied molecular orbital of vinyl ethers and alkyl maleates support that these monomer pairs have tendency to form alternating copolymers.With 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)carbamodithioate as the RAFT agent,the molecular weight of HEVE and DMM copolymer increases with the monomer conversion,demonstrating a controlled radical polymerization feature with well-controlled molecular weight and relatively narrower molecular weight distribution.With alternating copolymer of HEVE and DMM as macro-CTA(M_(n)=5200 and M_(w)/M_(n)=1.46),both the chain extension with HEVE and DMM(M_(n)=10400 and M_(w)/M_(n)=1.72)and block copolymerization with vinyl acetate have been successfully achieved(M_(n)=8500 and M_(w)/M_(n)=1.52).展开更多
Cationic ring-opening copolymerization of 1, 4-anhydro-2, 3-O-isopropylidene-α-D-ribo-pyranose (AIRP) with 1,4-anhydro-2,3-di-O-benzyl-α-D-ribopyranose (ADBR) preparedfrom D-ribose was studied. Copolymerization usin...Cationic ring-opening copolymerization of 1, 4-anhydro-2, 3-O-isopropylidene-α-D-ribo-pyranose (AIRP) with 1,4-anhydro-2,3-di-O-benzyl-α-D-ribopyranose (ADBR) preparedfrom D-ribose was studied. Copolymerization using SbCl_5 or BF_3 OEt_2 as catalyst atlow temperature gave stereoregular (1→4)β-D-ribofuranan (C-1 and C-4 ring cleavagesee Scheme 1) or (1→5) α-D-ribofuranan (C-1 and C-5 ring cleavage) respectively. Theeffects of catalysts, reaction time and temperatures on yield and stereoregularity of the ob-tained polymers were studied. Polymers were characterized by molecular weight, ~1HNMR,^(13)CNMR and optical rotation.展开更多
As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of t...As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer via ROMP.Because of the efficient hydrolysis reactions of the imine group,the generated copolymer can be easily degraded under mild condition.Moreover,the generated degradable product was the telechelic polymer bearing amine group,which was highly challenged for its direct synthesis.And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation.The introduction of imine unit in this work provides a new example of the degradable polymer synthesis.展开更多
We reported the first mussel-inspired alternating copolymer with a high amount of catechol groups (50% molar ratio) through a facile epoxy-amino click reaction between 9,9-bis(4-(2-glycidyloxyethyl)phenyl fluore...We reported the first mussel-inspired alternating copolymer with a high amount of catechol groups (50% molar ratio) through a facile epoxy-amino click reaction between 9,9-bis(4-(2-glycidyloxyethyl)phenyl fluorene (BGEPF) and dopamine (DA). The obtained copolymers were used to prepare carbon/nitrogen-doped α-Fe2O3 nanoparticles through self-assembly, coordination and calcination, which displayed excellent electrochemical performance as anode materials for Li-ion batteries.展开更多
In this paper, the fluorescence spectra of model compounds of light-emitting alternating copolymers. M (TPA-PPV) and M (TPA-PAV) (Scheme 1) were studied and the effect of KNO3 on the interaction between model compound...In this paper, the fluorescence spectra of model compounds of light-emitting alternating copolymers. M (TPA-PPV) and M (TPA-PAV) (Scheme 1) were studied and the effect of KNO3 on the interaction between model compounds and ionic micelle-watts interface was also investigated. It is found that (I) The fluorescence changes of M (TPA-PPV) are related to the state of CTAB and SDS solution. (II)Aggregated state can be formed in M (TPA-PAV) solution at low concentration of CTAB. (III) Higher concentration of KNO3 may affect the interaction between model compounds and ionic micelle-water interface.展开更多
Alternating copolymerization of 9,9-dihexyl-2,7-dibromofluorene, N-hexyl-2,7-dibromocarbazole (HCz) with diethynyldimethylsilane, diethynyldiphenylsilane, has been investigated using Sonogashira coupling reaction. Pho...Alternating copolymerization of 9,9-dihexyl-2,7-dibromofluorene, N-hexyl-2,7-dibromocarbazole (HCz) with diethynyldimethylsilane, diethynyldiphenylsilane, has been investigated using Sonogashira coupling reaction. Photophysical properties of the resulting copolymers were investigated with UV-Vis absorption and photoluminescence spectroscopy. All the copolymers in chloro-form solution showed absorption peaks at 270 - 280 nm with shoulder peaks at around 380 nm derived from π-π* transition or intra-molecular charge transfer through σ-π moiety, respectively. The chloroform solutions of the copolymers showed broad emission peaks at 415 - 425 nm. The emission wave lengths of the copolymers in the solid state (cast film) detected at 360 - 385 nm were remarkably blue-shifted in comparison with those in the chloroform solutions. Hydrosilylation reaction of the copolymers with 1,4-bis(dimethylsilyl)benzene yielded networked copolymers soluble in chloroform, indicating formation of branching polymers. The chloroform solutions of the HCz-based networked copolymers showed bimodal emission derived from new highly energy states in the σ-π conjugation.展开更多
Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via...Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.展开更多
The ring-opening alternating copolymerization processes of epoxides with small-molecule monomers,such as carbon dioxide(CO_(2)),carbonyl sulfide(COS)and cyclic anhydrides,are powerful strategies for preparing polymeri...The ring-opening alternating copolymerization processes of epoxides with small-molecule monomers,such as carbon dioxide(CO_(2)),carbonyl sulfide(COS)and cyclic anhydrides,are powerful strategies for preparing polymeric materials with degradable carbonate/ester/thiocarbonate main-chain backbone units.The catalysts selected for copolymerization processes play crucial roles in determining their reaction rates and productivities,as well as the selectivity,regio-and stereochemistry,compositions,and the molecular weights of their resultant copolymers.These processes often generate undesirable byproducts such as polyether or ether linkages dispersed randomly within the copolymer's chain,and/or more thermodynamically stable cyclic products.In this account,we outline our efforts of over a dozen years on developing highly active well-defined metal catalysts based on inter-and intra-molecular synergistic strategies to selectively produce completely alternating copolymers from epoxides and various small-molecule monomers.Much attention was paid to the enantioselective resolution copolymerization processes of racemic epoxides via regioselective ring-openings,and the asymmetric copolymerization processes of meso-epoxides with CO_(2),COS,or cyclic anhydrides via dissymmetrical ring-openings using multichiral catalytic systems,and affording isotactic copolymers with main-chain chirality.In addition,this account provides a thorough mechanistic understanding of the high reactivities,excellent selectivity,and unprecedented stereochemical controls of these copolymerization systems,mediated by interand intramolecular synergistic catalysis.展开更多
A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yie...A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.展开更多
Polymerization of 2-(4-halophenyl)-1,3-butadiene(2-XPB) and their copolymerization with isoprene using a yttrium catalyst have been examined. The β-diketiminato yttrium bis(alkyl) complex(1) activated by [Ph_3 C][B(C...Polymerization of 2-(4-halophenyl)-1,3-butadiene(2-XPB) and their copolymerization with isoprene using a yttrium catalyst have been examined. The β-diketiminato yttrium bis(alkyl) complex(1) activated by [Ph_3 C][B(C_(6) F_(5))_(4)] and Ali Bu3 shows high cis-1,4-selectivity(>98%) for the polymerization of 2-XPB(2-XPB = 2-FPB, 2-Cl PB and 2-Br PB) to afford halogenated plastic poly(dienes) with glass transition temperatures of30–55 ℃. Moreover, the copolymerization of 2-XPB with isoprene(IP) has also been achieved by this catalyst, and the insertion ratios of 2-XPB can be facilely tuned in a full range of 0%–100% simply by changing the 2-XPB-to-IP ratio. Quantitative hydrogenation of cis-1,4-poly(2-XPB) results in perfect alternating ethylene-halostyrene copolymers, and an alternating copolymer of 4-vinylbenzoic acid with ethylene is obtained by a consecutive reaction of ethylene-4-bromostyrene copolymer with ^(n)Bu Li, CO_(2) and HCl.展开更多
A series of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (NDCA, M1) derivatives (M2-M4) with different types of nonpolar substituted groups were synthesized and characterized by 1H/13C-NMR and mass spectromet...A series of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (NDCA, M1) derivatives (M2-M4) with different types of nonpolar substituted groups were synthesized and characterized by 1H/13C-NMR and mass spectrometry (MS). Ring- opening metathesis polymerization (ROMP) of these monomers using the Grubbs third generation catalyst (G3) generated high molecular weight polymers with much improved solubility compared with the NDCA's homopolymer. It was found that the solubility of these polymers increased with increased substituent's steric hindrance. The living polymerization of NDCA derivative containing the bulkiest substituent (M4) catalyzed by G3 in tetrahydrofuran was confirmed by the kinetic studies with low polydispersity indices (PDI) (〈 1.30). By using sequential ROMP, well-defined diblock copolymers containing anhydride groups were synthesized.展开更多
The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by cons...The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.展开更多
Polythiourethanes(PTU)and polythioesters(PTE)derived from renewable sources are emerging sustainable polymers for their excellent degradability and recyclability.However,P(TU-alt-TE)copolymers have been rare and chall...Polythiourethanes(PTU)and polythioesters(PTE)derived from renewable sources are emerging sustainable polymers for their excellent degradability and recyclability.However,P(TU-alt-TE)copolymers have been rare and challenging to synthesize.Here,we report the efficient synthesis of novel P(TU-alt-TE)copolymers via the alternating copolymerization of N-thiocarboxyanhydrides(NTA)/episufides(ES)and provide mechanistic insight into the alternating chain propagation process via density functional theory(DFT)calculation.The incorporation of ESs into traditional peptide backbone is capable of adjusting the glass transition temperature below thermal decomposition temperature,which confers better thermal processability by regulating the rigidity of the backbone and the hydrogen bond interaction among the polymer chains.Crosslinked PTUs with tailored properties are accessible by altering the feeding ratio of NTAs and(bifunctional)ESs.Moreover,the thiourethane in the backbone can endow interesting underwater adhesion properties to the materials.Considering the broad scope of NTA and ES monomers,this method is expected to provide a promising and general route to a wide range of P(TU-alt-TE)copolymers with diverse properties.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22161040)Natural Science Foundation of Gansu(No.24JRRA125)Science Research Project of Northwest Normal University(No.NWNU-LKZD2021-3)。
文摘The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.
基金financially supported by the Natural Science Foundation for Excellent Young Scholar of Jiangsu Province (No. BK20170056)the National Natural Science Foundation of China(No. 21304010)+1 种基金the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology)Ministry of Education, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.
基金the National Natural Science Foundation of China for financial support (No. 29933050).
文摘Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chiral diphosphine was proved to be effective at enantioselective copolymerization. Optical rotation, elemental analysis, H-1, C-13-NMR and IR spectra showed that the copolymer was optically active, isotactic, alternating poly(1,4-ketone) structure.
文摘The preparing methods, choice of catalysts and reaction kinetics of one of the monomers, diesteramide(DEA), of polyester-amides were investigated in details. The chemical structure of DEA was analyzed. And the Polyester-amides (PEA) were obtained by melt copolymerization with DEA. It is shown that DEA can be synthesized by DMT and hexamethylene diamine with the catalyst EX - 1 or EX - 2. The relationship between reaction rate of synthesizing monomer and concentration of hexamethylene diamine is first order kinetic relation.
基金financially supported by the National Natural Science Foundation of China(Nos.91222201,21173165 and 20871098)the Program for New Century Excellent Talents in Universities from the Ministry of Education of China(No.NCET-10-0936)+4 种基金the State Key Laboratory of Structure Chemistry(20100014)the Provincial Natural Foundation(2011JQ2011) of Shaanxithe Education Committee Foundation of Shaanxi Province(11JK0588,12JK0577)Graduate Innovation and Creativity Fund(YZZ12038) of Northwest UniversityHong Kong Research Grants Council(HKBU 202407 and FRG/06-07/II-16)
文摘From the self-assembly of the typical Salen-type Schiff-base ligand H2L and Zn(OAc)2.2H20 in the molar ratio of 1:1 or 1:2, the mononuclear [Zn(L)(H2O)] (1) or binuclear [Zn2(L)(OAc)2(H2O)] (2) are obtained, respectively. For both complexes 1 and 2, the unsaturated five-coordinate coordination environment to the catalytic active centers (Zn2+ ions) permits the monomer insertion for the effective solution copolymerization of cyclohexene oxide and maleic anhydride. All the solution copolymerizations afford poly(ester-co-ether)s, while lower catalyst and co-catalyst concentrations are helpful for the formation of alternating polyester. Of the three co-catalysts, 4-(dimethylamino)pyridine is found to be the most efficient, while an excess thereof is detrimental for chain growth of the copolymers.
基金financially supported by the National Key R&D Program of China (No.2021YFA1501700)the Science and Technology Development Plan of Jilin Province (Nos.20230101042JC and 20210201059GX)+1 种基金Basic Science Center Program (No.51988102)the National Natural Science Foundation of China (Nos.52203017 and 52073272)。
文摘Isothiourea is an important class of sulfur-containing molecules showing unique catalytic and biological activities. As such,polyisothiourea is envisioned to be an interesting type of polymer that potentially exhibits a number of interesting properties. However, there is no access to synthesizing well-defined polyisothiourea, and currently isothiourea-containing polymers are mainly prepared by immobilizing onto other polymer's side chain. Herein, we report the first facile synthesis of polyisothioureas via alternating copolymerization of aziridines and isothiocayanates. Mediated by the catalytic system of phosphazene superbases/alcohol, a broad scope of aziridines and isothiocayanates could be transformed into polyisothioureas with adjustable substitutions(11 examples). The structures of obtained polyisothioureas were fully characterized with ^(1)H-NMR, ^(13)C-NMR, and ^(1)H-^(13)C HMBC NMR. Moreover, the polyisothioureas show tunable thermal properties depending on substitutions on the isothiourea linkages. The novel structure of these polyisothioureas will enable a powerful platform for the discovery of nextgeneration functional plastics.
基金Supported by the National Natural Science Foundation of China(Nos.20704036, Key Program 20434020)the State Basic Research Projects of China(No.2005CB623802)
文摘The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. The copolymerization procedure was tracked by ^1H NMR analyses.
基金financially supported by the National Natural Science Foundation of China(No.22171017).
文摘The alternating copolymerization of hydroxyalkyl vinyl ethers and dialkyl maleates is investigated by conventional radical polymerization and reversible addition-fragmentation chain transfer polymerization(RAFT).The influence of comonomer structure,comonomer feeding ratios,and monomer concentrations on the copolymerization and the copolymer structure have been investigated systematically.With 2-hydroxyethyl vinyl ether(HEVE)and dimethyl maleates(DMM)as comonomers,a well-defined alternating copolymer is prepared with M_(n)=3400 and M_(w)/M_(n)=1.93 up to 71.6% monomer.The alternating sequential chain structure of the copolymers has been proved by both NMR and matrixassisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS).The experimental reactivity ratios and theoretical calculated highest occupied molecular orbital and the lowest unoccupied molecular orbital of vinyl ethers and alkyl maleates support that these monomer pairs have tendency to form alternating copolymers.With 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)carbamodithioate as the RAFT agent,the molecular weight of HEVE and DMM copolymer increases with the monomer conversion,demonstrating a controlled radical polymerization feature with well-controlled molecular weight and relatively narrower molecular weight distribution.With alternating copolymer of HEVE and DMM as macro-CTA(M_(n)=5200 and M_(w)/M_(n)=1.46),both the chain extension with HEVE and DMM(M_(n)=10400 and M_(w)/M_(n)=1.72)and block copolymerization with vinyl acetate have been successfully achieved(M_(n)=8500 and M_(w)/M_(n)=1.52).
文摘Cationic ring-opening copolymerization of 1, 4-anhydro-2, 3-O-isopropylidene-α-D-ribo-pyranose (AIRP) with 1,4-anhydro-2,3-di-O-benzyl-α-D-ribopyranose (ADBR) preparedfrom D-ribose was studied. Copolymerization using SbCl_5 or BF_3 OEt_2 as catalyst atlow temperature gave stereoregular (1→4)β-D-ribofuranan (C-1 and C-4 ring cleavagesee Scheme 1) or (1→5) α-D-ribofuranan (C-1 and C-5 ring cleavage) respectively. Theeffects of catalysts, reaction time and temperatures on yield and stereoregularity of the ob-tained polymers were studied. Polymers were characterized by molecular weight, ~1HNMR,^(13)CNMR and optical rotation.
基金financially supported by National Key R&D Program of China(No.2021YFA1501700)CAS Project for Young Scientists in Basic Research(No.YSBR-094)+1 种基金Natural Science Foundation of Anhui Province(Nos.2308085Y35 and 2023AH030002)Hefei Natural Science Foundation(No.202304)。
文摘As a powerful synthetic tool,ruthenium-catalyzed ring-opening metathesis polymerization(ROMP)has been widely utilized to prepare diverse heteroatom-containing polymers.In this contribution,we report the synthesis of the novel imine-based polymer through the copolymerization of cyclooctene with cyclic imine comonomer via ROMP.Because of the efficient hydrolysis reactions of the imine group,the generated copolymer can be easily degraded under mild condition.Moreover,the generated degradable product was the telechelic polymer bearing amine group,which was highly challenged for its direct synthesis.And this telechelic polymer could also be used for the further synthesis of new polymer through post-transformation.The introduction of imine unit in this work provides a new example of the degradable polymer synthesis.
基金the National Natural Science Foundation of China (Nos.91527304,21474062,and 51773115)the Program for Basic Research of Shanghai Science and Technology Commission (No.17JC1403400)the Program of Shanghai Subject Chief (No.15XD1502400) for financial support
文摘We reported the first mussel-inspired alternating copolymer with a high amount of catechol groups (50% molar ratio) through a facile epoxy-amino click reaction between 9,9-bis(4-(2-glycidyloxyethyl)phenyl fluorene (BGEPF) and dopamine (DA). The obtained copolymers were used to prepare carbon/nitrogen-doped α-Fe2O3 nanoparticles through self-assembly, coordination and calcination, which displayed excellent electrochemical performance as anode materials for Li-ion batteries.
基金The authors gratefully thank the NSFC (No. 29992530, 29873060) and CAS for the financial support.
文摘In this paper, the fluorescence spectra of model compounds of light-emitting alternating copolymers. M (TPA-PPV) and M (TPA-PAV) (Scheme 1) were studied and the effect of KNO3 on the interaction between model compounds and ionic micelle-watts interface was also investigated. It is found that (I) The fluorescence changes of M (TPA-PPV) are related to the state of CTAB and SDS solution. (II)Aggregated state can be formed in M (TPA-PAV) solution at low concentration of CTAB. (III) Higher concentration of KNO3 may affect the interaction between model compounds and ionic micelle-water interface.
文摘Alternating copolymerization of 9,9-dihexyl-2,7-dibromofluorene, N-hexyl-2,7-dibromocarbazole (HCz) with diethynyldimethylsilane, diethynyldiphenylsilane, has been investigated using Sonogashira coupling reaction. Photophysical properties of the resulting copolymers were investigated with UV-Vis absorption and photoluminescence spectroscopy. All the copolymers in chloro-form solution showed absorption peaks at 270 - 280 nm with shoulder peaks at around 380 nm derived from π-π* transition or intra-molecular charge transfer through σ-π moiety, respectively. The chloroform solutions of the copolymers showed broad emission peaks at 415 - 425 nm. The emission wave lengths of the copolymers in the solid state (cast film) detected at 360 - 385 nm were remarkably blue-shifted in comparison with those in the chloroform solutions. Hydrosilylation reaction of the copolymers with 1,4-bis(dimethylsilyl)benzene yielded networked copolymers soluble in chloroform, indicating formation of branching polymers. The chloroform solutions of the HCz-based networked copolymers showed bimodal emission derived from new highly energy states in the σ-π conjugation.
基金supported by The National Natural Science Foundation of China(21504039)。
文摘Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.
基金financially supported by the National Natural Science Foundation of China(No.21920102006)。
文摘The ring-opening alternating copolymerization processes of epoxides with small-molecule monomers,such as carbon dioxide(CO_(2)),carbonyl sulfide(COS)and cyclic anhydrides,are powerful strategies for preparing polymeric materials with degradable carbonate/ester/thiocarbonate main-chain backbone units.The catalysts selected for copolymerization processes play crucial roles in determining their reaction rates and productivities,as well as the selectivity,regio-and stereochemistry,compositions,and the molecular weights of their resultant copolymers.These processes often generate undesirable byproducts such as polyether or ether linkages dispersed randomly within the copolymer's chain,and/or more thermodynamically stable cyclic products.In this account,we outline our efforts of over a dozen years on developing highly active well-defined metal catalysts based on inter-and intra-molecular synergistic strategies to selectively produce completely alternating copolymers from epoxides and various small-molecule monomers.Much attention was paid to the enantioselective resolution copolymerization processes of racemic epoxides via regioselective ring-openings,and the asymmetric copolymerization processes of meso-epoxides with CO_(2),COS,or cyclic anhydrides via dissymmetrical ring-openings using multichiral catalytic systems,and affording isotactic copolymers with main-chain chirality.In addition,this account provides a thorough mechanistic understanding of the high reactivities,excellent selectivity,and unprecedented stereochemical controls of these copolymerization systems,mediated by interand intramolecular synergistic catalysis.
基金This project was supported by the National Natural Science Foundation of China (No. 20084001).
文摘A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammoniun bromide as phase transfer catalyst (PTC) at 0 'C . The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270 °C and the resulting polymer had a Mw, of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.
基金financially supported by the National Natural Science Foundation of China (Nos. 21634007 and 51773193)the Department of Science and Technology of Jilin Province(No. 20180101171JC)。
文摘Polymerization of 2-(4-halophenyl)-1,3-butadiene(2-XPB) and their copolymerization with isoprene using a yttrium catalyst have been examined. The β-diketiminato yttrium bis(alkyl) complex(1) activated by [Ph_3 C][B(C_(6) F_(5))_(4)] and Ali Bu3 shows high cis-1,4-selectivity(>98%) for the polymerization of 2-XPB(2-XPB = 2-FPB, 2-Cl PB and 2-Br PB) to afford halogenated plastic poly(dienes) with glass transition temperatures of30–55 ℃. Moreover, the copolymerization of 2-XPB with isoprene(IP) has also been achieved by this catalyst, and the insertion ratios of 2-XPB can be facilely tuned in a full range of 0%–100% simply by changing the 2-XPB-to-IP ratio. Quantitative hydrogenation of cis-1,4-poly(2-XPB) results in perfect alternating ethylene-halostyrene copolymers, and an alternating copolymer of 4-vinylbenzoic acid with ethylene is obtained by a consecutive reaction of ethylene-4-bromostyrene copolymer with ^(n)Bu Li, CO_(2) and HCl.
基金financially supported by the National Natural Science Foundation of China(Nos.21234006 and 21574098)
文摘A series of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (NDCA, M1) derivatives (M2-M4) with different types of nonpolar substituted groups were synthesized and characterized by 1H/13C-NMR and mass spectrometry (MS). Ring- opening metathesis polymerization (ROMP) of these monomers using the Grubbs third generation catalyst (G3) generated high molecular weight polymers with much improved solubility compared with the NDCA's homopolymer. It was found that the solubility of these polymers increased with increased substituent's steric hindrance. The living polymerization of NDCA derivative containing the bulkiest substituent (M4) catalyzed by G3 in tetrahydrofuran was confirmed by the kinetic studies with low polydispersity indices (PDI) (〈 1.30). By using sequential ROMP, well-defined diblock copolymers containing anhydride groups were synthesized.
文摘The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.
基金supported by the National Natural Science Foundation of China(22125101,22331002 to H.L.,22171037,22101040 to W.R.)。
文摘Polythiourethanes(PTU)and polythioesters(PTE)derived from renewable sources are emerging sustainable polymers for their excellent degradability and recyclability.However,P(TU-alt-TE)copolymers have been rare and challenging to synthesize.Here,we report the efficient synthesis of novel P(TU-alt-TE)copolymers via the alternating copolymerization of N-thiocarboxyanhydrides(NTA)/episufides(ES)and provide mechanistic insight into the alternating chain propagation process via density functional theory(DFT)calculation.The incorporation of ESs into traditional peptide backbone is capable of adjusting the glass transition temperature below thermal decomposition temperature,which confers better thermal processability by regulating the rigidity of the backbone and the hydrogen bond interaction among the polymer chains.Crosslinked PTUs with tailored properties are accessible by altering the feeding ratio of NTAs and(bifunctional)ESs.Moreover,the thiourethane in the backbone can endow interesting underwater adhesion properties to the materials.Considering the broad scope of NTA and ES monomers,this method is expected to provide a promising and general route to a wide range of P(TU-alt-TE)copolymers with diverse properties.