This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic b...This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic behavior of cohesive soil. This modified approach involves direct shear testing under constant volume, a method that has been developed by the author. A modified ring shear apparatus and the theory behind the shear criterion and its implication for slope stability analysis are then discussed and the results of investigated tuffitic clayey sediments are presented. The results show that the presented new shear criterion does not consider the cohesion as material constant, but rather it depends on the void ratio. In this case, the stress state and the consolidation status and thus the elasto-plastic behavior of the clayey soil are considered.展开更多
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m...Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding.展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify t...Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify the shear characteristics and formation mechanism of loess-mudstone landslides,field investigations,ring shear tests and numerical simulation analyses were performed on the loess specimens collected from the Dingjiagou landslide in Yan’an city,China.The test results showed that both the peak strength and residual strength of slip zone soils have a decreasing tendency with moisture content,while the increasing of normal stress caused an increase in the shear strength.These phenomena indicate that the rise in the moisture content induced by precipitation or the decreasing of normal stress due to excavation activities would result in the weakening of slip zone soils.Numerical simulations of the evolution process of slope failure using the finite element method were conducted based on the Mohr–Coulomb criterion.It was found that the heavy precipitation played a more important role in the slope instability compared with the excavation.In addition,the field investigation showed that loess soils with well-developed cracks and underlying mudstone soils provide material base for the formation of loess-mudstone landslides.Finally,the formation mechanism of this type of landslides was divided into three stages,namely,the local deformation stage,the penetration stage,the creeping-sliding stage.This study may provide a basis for understanding the sliding process of loess-mudstone landslides,as well as guidelines for the prevention and mitigation of loess-mudstone landslides.展开更多
In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong R...In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
文摘This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic behavior of cohesive soil. This modified approach involves direct shear testing under constant volume, a method that has been developed by the author. A modified ring shear apparatus and the theory behind the shear criterion and its implication for slope stability analysis are then discussed and the results of investigated tuffitic clayey sediments are presented. The results show that the presented new shear criterion does not consider the cohesion as material constant, but rather it depends on the void ratio. In this case, the stress state and the consolidation status and thus the elasto-plastic behavior of the clayey soil are considered.
基金funded by the National Science Foundation of China(CN)(Nos.42090054,41922055,41931295)the Key Research and Development Program of Hubei Province of China(No.2020BCB079)。
文摘Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金supported by the National Natural Science Foundation of China(No.41902268)the China Postdoctoral Science Foundation(No.2019T120871)。
文摘Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify the shear characteristics and formation mechanism of loess-mudstone landslides,field investigations,ring shear tests and numerical simulation analyses were performed on the loess specimens collected from the Dingjiagou landslide in Yan’an city,China.The test results showed that both the peak strength and residual strength of slip zone soils have a decreasing tendency with moisture content,while the increasing of normal stress caused an increase in the shear strength.These phenomena indicate that the rise in the moisture content induced by precipitation or the decreasing of normal stress due to excavation activities would result in the weakening of slip zone soils.Numerical simulations of the evolution process of slope failure using the finite element method were conducted based on the Mohr–Coulomb criterion.It was found that the heavy precipitation played a more important role in the slope instability compared with the excavation.In addition,the field investigation showed that loess soils with well-developed cracks and underlying mudstone soils provide material base for the formation of loess-mudstone landslides.Finally,the formation mechanism of this type of landslides was divided into three stages,namely,the local deformation stage,the penetration stage,the creeping-sliding stage.This study may provide a basis for understanding the sliding process of loess-mudstone landslides,as well as guidelines for the prevention and mitigation of loess-mudstone landslides.
基金financial aided by the National Basic Research Program of China (2012CB026103)the National Natural Science Foundation of China (Grant Nos. 41172283, 41372313)
文摘In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.