Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and...Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and exploration of the second member of the Paleogene Kongdian Formation(Kong-2 Member)in the Cangdong Sag,Bohai Bay Basin,China.It is clarified that the circle structure and circle effects are the marked features of a continental fault petroliferous basin,and they govern the orderly distribution of conventional and unconventional hydrocarbons in the whole petroleum systems of the rifted basin.Tectonic circle zones control sedimentary circle zones,while sedimentary circle zones and diagenetic circle zones control the spatial distribution of favorable reservoirs,thereby determining the orderly distribution of hydrocarbon accumulations in various circles.A model for the integrated,systematic accumulation of conventional and unconventional hydrocarbons under a multi-circle structure of the whole petroleum system of continental rifted basin has been developed.It reveals that each sag of the rifted basin is an independent whole petroleum system and circle system,which encompasses multiple orderly circles of conventional and unconventional hydrocarbons controlled by the same source kitchen.From the outer circle to the middle circle and then to the inner circle,there is an orderly transition from structural and stratigraphic reservoirs,to lithological and structural-lithological reservoirs,and finally to tight oil/gas and shale oil/gas enrichment zones.The significant feature of the whole petroleum system is the orderly control of hydrocarbons by multi-circle stratigraphic coupling,with the integrated,orderly distribution of conventional and unconventional reserves being the inevitable result of the multi-layered interaction within the whole petroleum system.This concept of multi-circle stratigraphic coupling for the orderly,integrated accumulation of conventional and unconventional hydrocarbons has guided significant breakthroughs in the overall,three-dimensional exploration and shale oil exploration in the Cangdong Sag.展开更多
In contrast to well-studied rift basins in NE China,the Hailar Basin has received relatively less attention regarding the combined patterns of different types of grabens and half-grabens.This study aims to explore whe...In contrast to well-studied rift basins in NE China,the Hailar Basin has received relatively less attention regarding the combined patterns of different types of grabens and half-grabens.This study aims to explore whether the combined patterns of grabens in the Hailar Basin exhibit similar characteristics to those in other NE China rift basins and to identify the underlying causes.To achieve this,a comprehensive analysis of the major fault systems and the combined patterns of faulted sub-depressions,as well as their controlling mechanisms,was conducted.This analysis utilized the latest 3D seismic data that cover nearly the entire Beier Depression.Three groups of pre-existing fault systems were observed in the basement of the Beier Depression,and they are the NEE-EW-trending fault systems,the NE-trending fault systems,and the NW-trending fault systems.The NEE-EW-trending fault systems were distributed in the central part of the Beier Depression and primarily controlled the sedimentary filling of the Tongbomiao and the Lower Nantun Formations.The NE-trending fault systems were distributed in the southwestern part of the Beier Depression and primarily controlled the sedimentary filling of the Upper Nantun Formations.The NW-trending fault systems were distributed rarely in the Beier Depression.Five kinds of combined patterns of the sub-depressions were developed in the Beier Depression,and they are the parallel,en echelon,face-to-face,back-to-back,and S-shaped combined patterns.They were controlled by the NEE-EW-trending and the NE-trending fault systems with different orientations,arrangements,and activation sequences.展开更多
On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which h...On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.展开更多
The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-...The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.展开更多
Based on the merged 3 D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kong...Based on the merged 3 D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kongdian Formation in the trough area of Cangdong sag, Bohai Bay Basin. A conventional-unconventional hydrocarbon accumulation pattern in the trough area of rifted basin was revealed. The reservoir forming elements in the trough area of Cangdong sag have a zonation feature in terms of reservoirs and source rocks. There are two types of reservoir forming models, primary trough and reformed trough. The formation and evolution of trough controlled the orderly distribution of conventional oil to unconventional oil in the trough. Particularly, structural reservoirs occur in the upper part of the trough, stratigraphic-lithologic reservoirs are likely to form in the delta front deposits at the outer ring of trough, the middle ring transitional belt is the favorable site for tight oil reservoirs, while the fine grain deposits zone in the inner ring is shale oil and gas exploration area. The study has pointed out the new domains and directions for searching reserves in the secondary exploration of mature oilfields.展开更多
Rifted margins in the central South Atlantic portray spatial variability in terms of preserved width and thickness,which relates to complex rift-related fault activities.However,there is still a lack of systematic and...Rifted margins in the central South Atlantic portray spatial variability in terms of preserved width and thickness,which relates to complex rift-related fault activities.However,there is still a lack of systematic and quantitative explanations for the causes of the variations that are observed along the paired rifts.To elucidate this issue,2D viscous-plastic thermomechanical numerical models are applied to capture the behavior of deformation,in which we investigate the effects of extensional rate,crustal strength and thickness on crust-mantle coupling,and timing of transition from rifting to breakup.Our numerical experiments demonstrate that crust-mantle decoupling accounts for crustal hyperextension,and that incorporating moderate-intensity rheology into lower crust may yield insights into the hyper-extended crust and asymmetric architecture observed in the central South Atlantic.The results also suggest that undulations in lithospheric basement cause asymmetric mantle upwelling.The lower crust of fold belts takes priority to be thermally weakened over craton and induces rift migration simultaneously.A new mechanism for the formation of failed rift is described,where the mechanical decoupling derived from thermally weakened lower crust gives access to dual rift migration.These results reinforce the interpretation on how crustal rheology shapes margins architectures and highlight the first-order effects of crust-mantle coupling.展开更多
A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in th...A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in the Shiwu Rifled Basin and its indication of the water-rock interaction processes. The hydrodynamic field controls the spacial distribution of formation water. Due to the penetration of meteoric water, the salinity is below 4,500mg/L at the basin margin and the severely faulted central ridge and increases basin ward to 7,000-10,000mg/L. The vertical change of formation water can be divided into 3 zones, which correspond respectively to the free replacement zone (〈1,250m), the obstructed replacement zone (1,250m-1,650m) and the lagged zone (〉 1,650m) in hydrodynamics. In the free replacement zone, the formation water is NaHCO3-type with its salinity increased to 10,000mg/L. The formation water in the obstructed replacement zone is Na2SO4-type with its salinity decreased to 5,000mg/L-7,000mg/L because of the dehydration of mud rocks. The formation water in the lagged zone is CaC12-type, but its salinity decreases sharply at a depth of 1,650m and then increases vertically downward to 10,000mg/L. This phenomenon can be best explained by the osmosis effect rather than the dehydration of mud rocks. The relationships between Cl^--HCO3^- and Na^++K^+-Ca^2+ show that the initial water-rock interaction is the dissolution of NaCl and calcium-beating carbonate, causing an increase of Na^+-K^+-Ca^2+-Cl^- and salinity. The succeeding water-rock interaction is albitization, which leads to a decrease of Na^+ and an increase of Ca2+ simultaneously, and generates CaCl2-type fluid. The above analysis shows that the geochemical evolution of formation water is governed by the water-rock interactions, while its spacial distribution is controlled by the hydrological conditions. The water-rock interaction processes are supported by other geological observations, suggesting that formation water geochemistry is a viable method to trace the fluid-rock interaction processes and has broad applications in practice.展开更多
In order to reveal the development mechanism of high-quality clastic rock reservoir, the basic characteristics of Sha-3 Member of the Shahejie Formation in the Raoyang sag, Bohai Bay Basin, are analyzed based on cores...In order to reveal the development mechanism of high-quality clastic rock reservoir, the basic characteristics of Sha-3 Member of the Shahejie Formation in the Raoyang sag, Bohai Bay Basin, are analyzed based on cores observation, thin-sections and SEM images, and petrophysical properties measurements as well. It is found that high-mature composition and texture, early oil charging, and dissolution are the main factors controlling the formation and preservation of pores in deep reservoirs. Compaction is the major factor destructing pores, whereas formation overpressure is conducive to the preservation of original pores, high compositional and medium textural maturity can enhance the resistance capacity to compaction and protect primary pores. Early oil charging could lead to temporary cessation of diagenesis and thus inhibit the cementation. When organic acids entered reservoir formations, considerable amounts of secondary pores were formed, leading to the local improvement of petrophysical properties. When predicting good quality belt in exploration of deep basin, it is recommended that the superimposing effects of the multiple factors(overpressure, early oil charging, compositional and textural maturity, diagenesis) be taken into consideration.展开更多
Orthogneiss within the Paleoproterozoic strata of Lesser Himalayan sequence across the Himalaya has been variably linked to development in a continental arc setting, Indian basement, or a continental rift.New whole ro...Orthogneiss within the Paleoproterozoic strata of Lesser Himalayan sequence across the Himalaya has been variably linked to development in a continental arc setting, Indian basement, or a continental rift.New whole rock and trace element geochemical data and U/Pb zircon geochronology indicate that the granitoid protoliths to these rocks were derived from upper crustal sources in the Paleoproterozoic and have within-plate, A-type affinities. This is consistent with their generation in a rifted margin and is compatible with paleogeographic reconstructions that indicate an open boundary for present-day northern India in the Paleoproterozoic.展开更多
Continental rifting is one of the fundamental components in the Wilson cycle,and its comprehensive investigation is essential for understanding the geodynamic mechanisms of plate tectonics.Furthermore,continental rift...Continental rifting is one of the fundamental components in the Wilson cycle,and its comprehensive investigation is essential for understanding the geodynamic mechanisms of plate tectonics.Furthermore,continental rifts host significant mineral and hydrocarbon resources and also preserve valuable records of climatic environmental evolution.This study presents a systematic synthesis of their classification and magmatism after reviewing the research history of continental rifts.The formation and evolution of continental rifts are spatiotemporally associated with magmatic activity.Based on magmatic productivity,rifted margins that develop from successful continental rifts are categorized into different types,including magma-rich and magmapoor,with the intermediate category encompassing margins developed in active continental margin settings.Previous studies and systematically compiled data in this study indicate that distinct magmatic rock assemblages are characteristic of different rift types.Magma-rich rifts and rifted margins typically exhibit bimodal magmatism,including highly alkaline–silica poor alkaline rocks during the early rifting stage,alkalic basalt–trachyandesite–peralkaline rhyolite,transitional basalt and rhyolite during the evolutionary stage,and predominantly tholeiitic basalt during the final stage.Magma-poor rifted margins primarily consist of mafic rocks,including carbonatite and alkaline rocks during the initial rifting stage,followed by alkalic and tholeiitic basalts during the evolutionary stage.The lithospheric mantle in magma-poor rifted margins experienced extensive melt-induced metasomatism,making it an important research target for understanding continental rifting processes and magmatic evolution.In active continental margin rifts,magmatic rocks are dominated by bimodal magmatism,primarily encompassing the entire calcalkaline suite from basalt to rhyolite,along with minor alkalic basalt.During continental rifting,these magmatic processes effectively weaken the lithosphere,localize deformation,and ultimately facilitate the rifting progression to continental breakup.Further questions meriting attention include:(1)petrogenesis and geodynamics of magmatic rocks in continental rifts;(2)controlling factors for success or failure of continental rifting;(3)the nature of the ocean-continent transition and the process of transitioning from continental rifting to seafloor spreading;(4)controlling factors for the generation of magma-rich versus magma-poor rifted margins;and(5)the impact of continental rifting on climate change.Addressing these questions necessitates integrated approaches combining systematic geological,geochemical,and geophysical investigations of both modern and ancient rift systems with advanced techniques of numerical geodynamic modeling.展开更多
Large-scale Danian-age(post-K/Pg boundary)Deccan magmatism is well known from the Mumbai metropolitan area,located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin.Thi...Large-scale Danian-age(post-K/Pg boundary)Deccan magmatism is well known from the Mumbai metropolitan area,located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin.This compositionally diverse late-Deccan magmatic suite contains subaerial tholeiitic lavas and dykes typical of the main Deccan province,with many features atypical of the Deccan,such as spilitic pillow lavas,“intertrappean”sediments(often containing considerable volcanic ash),rhyolitic lavas and tuffs,gabbro-granophyre intrusions,and trachyte intrusions containing alkali basalt enclaves.Most of these units,previously dated at 62.5 Ma to 61 Ma,are contemporaneous with or slightly postdate the 62.5 Ma India-Seychelles continental breakup and Panvel flexure formation.In the Dongri-Uttan area,two samples of a>50-m-thick,columnar-jointed rhyolite from the Darkhan Quarry and from a section behind the current Uttan Sagari Police Station have previously been dated at 62.6±0.6 Ma and 62.9±0.2 Ma(^(40)Ar/^(39)Ar,2r errors).New exposures reveal that these two statistically indistinguishable 40 Ar/39 Ar ages correspond to two distinct rhyolite units,separated by well-bedded silicic ash.The columnar rhyolites are microcrystalline,composed of quartz and alkali feldspar,with rare small(1–2 mm),altered feldspar phenocrysts,and no recognisable relict vitroclasts.Given the westerly structural dip,most of their lateral extent is submerged under the Arabian Sea,and we consider them to be possible flood rhyolite lavas.We interpret the ash beds,composed of pumice clasts and glass shards,as a low-grade(nonwelded)vitric ash,derived from a possibly distal Plinian eruption and deposited by fallout.The lavas and ash are peraluminous rhyolites.The lavas are Sr-Ba-poor and Rb-Zr-Nb-rich,and show“seagull-shaped”rare earth element patterns with deep negative europium anomalies.These crystal-poor lavas are“hot-dry-reduced”rhyolites typical of intraplate,continental rift and rifted margin settings.The very different high-field strength element contents of the lavas and the ash indicate compositionally distinct magma batches.The 62.5 Ma Dongri-Uttan sequence provides clear evidence for rapid silicic eruptions of effusive and explosive nature,alternating with each other and sourced from distinct magma chambers and eruptive vents.A newly identified,highly feldspar-phyric trachyte intrusion marks the last phase of magmatic activity in the area,corresponding with late-stage trachyte-syenite intrusions exposed in coastal western India and the Seychelles,and shows that the Mumbai rhyolites and trachytes form a compositional continuum.展开更多
Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the wes...Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the western coasts of Africa and the eastern shore of South America and the morphotectonic geometry of the rift basins of South America, conditioning the morphostructure of the Andean chain and the current geoforms of the foreland.展开更多
A-type rocks have drawn considerable attention in the past few decades due to their distinctive mineralogical and geochemical fingerprints and prospective utility for geodynamic reconstruction of the lithosphere.A com...A-type rocks have drawn considerable attention in the past few decades due to their distinctive mineralogical and geochemical fingerprints and prospective utility for geodynamic reconstruction of the lithosphere.A comprehensive study,involving zircon U-Pb geochronology,wholerock elemental and Sr-Nd-Pb isotopic geochemistry,was undertaken to elucidate the origin and evolutionary process for syenites from the Daguiping area in the North Daba mountains,South Qinling belt.The syenites revealed an Ordovician igneous crystallization age of 454.4±17 Ma,coeval with the neighboring mafic rocks.All samples show high SiO_(2),LREEs,and HFSEs(Nb,Ta,Zr and Hf)contents,with negative to slightly positive Eu(Eu/Eu^(*)=0.78-1.08)anomalies.The geochemical characteristics of the Daguiping syenites imply that they are of A_1-type magmatic affinity,which is confirmed by their high total alkali levels(8.57 wt.%-11.94 wt.%),Zr+Nb+Ce+Y contents(738.00 ppm-1734.78 ppm),and 10000×Ga/Al ratios(3.25-4.22),as well as low Y/Nb ratios(0.30-0.40).Our samples exhibit a wide range of initial^(87)Sr/^(86)Sr ratios of 0.701943 to 0.709802 and a narrow range of^(143)Nd/^(144)Nd ratios of 0.512205-0.512246 withε_(Nd)(t)values from+3.0 to+3.8.These rocks display(^(206)Pb/^(204)Pb)_(initial),(^(207)Pb/^(204)Pb)_(initial),and(^(208)Pb/^(204)Pb)_(initial)ratios range from 17.96 to 18.62,15.55 to 15.59,and 36.87 to 38.22,respectively.All of the isotopic data indicate that the syenites were essentially mantle-derived.A cogenetic source for the Daguiping syenites and coeval mafic rocks in the South Qinling belt is supported by their uniform Sr-Nd-Pb isotope data and linear major/trace elemental changes,with prolonged fractional crystallization considered as the essential mechanism for these geochemical discrepancies.Mass-balance and Rayleigh fractionation modeling estimate~85 vol%fractional crystallization involving amphibole,clinopyroxene,plagioclase,Kfeldspar,biotite,Fe-Ti oxide,and quartz,to reproduce the compositional varieties between a coeval mafic rock and the Daguiping syenites.The Daguiping syenites and associated alkaline rocks were likely related to a rifting episode triggered by asthenospheric upwelling,which led to the South Qinling detaching from the South China Block along the Mianlue suture during the Early Paleozoic.展开更多
Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative cont...Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.展开更多
As 1.5 million wildebeest pierce the dawn mist of the East African Rift Valley and the roar of lions merges with the cry of zebras beneath sprawling acacia trees,this land unveils life at its rawest-majestic and achin...As 1.5 million wildebeest pierce the dawn mist of the East African Rift Valley and the roar of lions merges with the cry of zebras beneath sprawling acacia trees,this land unveils life at its rawest-majestic and achingly fragile.展开更多
A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associate...A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence.展开更多
Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods...Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods of the coal-bearing formations were determined,and the fault systems were divided.Combined with the coal seam thickness and actual gas indication in logging,the controls of fault systems in the rift basin on the spatial distribution of coal and the occurrence of coal-rock gas were identified.The results show that the Wangfu fault depression is an asymmetrical graben formed under the control of basement reactivated strike-slip T-rupture,and contains coal-bearing formations and five sub-types of fault systems under three types.The horizontal extension strength,vertical activity strength and tectono-sedimentary filling difference of basement faults control vertical stratigraphic sequences,accumulation intensity,and accumulation frequency of coal seam in rift basin.The structural transfer zone formed during the segmented reactivation and growth of the basement faults controls the injection location of steep slope exogenous clasts.The filling effect induced by igneous intrusion accelerates the sediment filling process in the rift lacustrine area.The structural transfer zone and igneous intrusion together determine the preferential accumulation location of coal seams in the plane.The faults reactivated at the basement and newly formed during the rifting phase serve as pathways connecting to the gas source,affecting the enrichment degree of coal-rock gas.The vertical sealing of the faults was evaluated by using shale smear factor(SSF),and the evaluation criterion was established.It is indicated that the SSF is below 1.1 in major coal areas,indicating favorable preservation conditions for coal-rock gas.Based on the influence factors such as fault activity,segmentation and sealing,the coal-rock gas accumulation model of rift basin was established.展开更多
Previous studies have indicated that sediment gravity flow deposits developed in lacustrine active extensional rift basins are primarily influenced by tectonics and to a lesser extent by climate.Our present work revea...Previous studies have indicated that sediment gravity flow deposits developed in lacustrine active extensional rift basins are primarily influenced by tectonics and to a lesser extent by climate.Our present work reveals that climate can obscure the effect of tectonic subsidence by regulating sediment supply;conversely,tectonics can impede the sedimentary manifestation of climatic impacts.Here a case study has been presented to assess the impact of climate-modulated rapid lake-level rise and tectonic subsidence on the development of coarse-grained gravity flow deposits in the Dongying rift margin of the Bohai Bay Basin,eastern China.The lithofacies analysis reveals frequent bed amalgamation,abundant thick massive coarse-grained deposits,widespread cross bedding and plant fragments,and incomplete composite bed formed by high-energy erosion,indicating that the hyperpycnal flow is an important mechanism driving the deposition of these coarse-grained sediments.Detailed sequence stratigraphic analysis and sediment dispersal pattern suggest that the long-striped nearshore subaqueous fan systems induced by outburst-flood hyperpycnal flow distributed along the border fault,are primarily controlled by long-term tectonics,while the rapid rise of lake level driven by short-term climate change possibly intensifies seasonal flood-generated hyperpycnal flow occurrences and consequently promotes the basinal fan progradation.The maximum scale of these coarse-grained gravity flow deposits of the basinal fan systems are typically attained during the transgressive systems tract,which deviates from the classical sequence stratigraphic model.Furthermore,it presented a continuous transition from the proximal to the distal part,encompassing traction flows and turbidity currents during the periods of relatively stable tectonics.Nevertheless,gravel-rich debris flows appear to predominate the dispersion of coarse-grained sediments during periods characterized by intense tectonic activity.The coarse-grained gravity flow deposits in the lacustrine rift margin reported here,challenge the traditional beliefs:this study suggests that subaqueous deposits abundantly preserved in the transgressive setting.展开更多
The Cambrian Qiongzhusi Formation in the Sichuan Basin harbors significant potential for shale gas harvesting.However,systematic disparities in mineral composition and reservoir architecture have been observed between...The Cambrian Qiongzhusi Formation in the Sichuan Basin harbors significant potential for shale gas harvesting.However,systematic disparities in mineral composition and reservoir architecture have been observed between intra-and extra-trough reservoirs within the Deyang-Anyue Rift Trough.These variations were primarily determined by divergences in the sedimentary environments developed during the evolution of the rift trough,which were a main factor in fostering the heterogeneous distribution of shale gas enrichment found today.However,the genetic mechanisms that govern reservoir heterogeneity across distinct structural domains(intra-trough,trough margin,and extra-trough)remain poorly understood,particularly regarding the coupling relationships between depositional environments,reservoir characteristics,and gas-bearing properties.This study adopts a multidisciplinary approach to investigating this issue that integrates core analysis,well-log interpretations,and geochemical data.Through systematic comparisons conducted using X-ray diffraction mineralogy,organic carbon quantification,and spontaneous imbibition experiments,we characterize the mineral assemblages,organic geochemical signatures,and pore structures found across the three structural domains of the Deyang-Anyue Rift Trough.The key findings are as follows:(1)The depositional environment is the main influence on reservoir distribution and organic matter enrichment,with intra-trough shales exhibiting a higher abundance of organic matter than their trough-margin and extra-trough counterparts.(2)Enhanced brittleness in intra-trough zones correlates with the predominance of biogenic silica therein.(3)Synergistic organic-inorganic interactions govern pore system development.(4)Gas-bearing capacity is jointly determined by effective porosity and organic matter content.These findings establish the rift trough as a preferential exploration target,providing critical geological guidance for optimizing shale gas exploration strategies in the Cambrian Qiongzhusi Formation.展开更多
基金Supported by the National Science and Technology Major Project of China(2024ZD1400101)China National Key Research and Development Project(2022YFF0801204)Major Science and Technology Project of CNPC(2023ZZ15YJ01,2021DJ0702)。
文摘Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and exploration of the second member of the Paleogene Kongdian Formation(Kong-2 Member)in the Cangdong Sag,Bohai Bay Basin,China.It is clarified that the circle structure and circle effects are the marked features of a continental fault petroliferous basin,and they govern the orderly distribution of conventional and unconventional hydrocarbons in the whole petroleum systems of the rifted basin.Tectonic circle zones control sedimentary circle zones,while sedimentary circle zones and diagenetic circle zones control the spatial distribution of favorable reservoirs,thereby determining the orderly distribution of hydrocarbon accumulations in various circles.A model for the integrated,systematic accumulation of conventional and unconventional hydrocarbons under a multi-circle structure of the whole petroleum system of continental rifted basin has been developed.It reveals that each sag of the rifted basin is an independent whole petroleum system and circle system,which encompasses multiple orderly circles of conventional and unconventional hydrocarbons controlled by the same source kitchen.From the outer circle to the middle circle and then to the inner circle,there is an orderly transition from structural and stratigraphic reservoirs,to lithological and structural-lithological reservoirs,and finally to tight oil/gas and shale oil/gas enrichment zones.The significant feature of the whole petroleum system is the orderly control of hydrocarbons by multi-circle stratigraphic coupling,with the integrated,orderly distribution of conventional and unconventional reserves being the inevitable result of the multi-layered interaction within the whole petroleum system.This concept of multi-circle stratigraphic coupling for the orderly,integrated accumulation of conventional and unconventional hydrocarbons has guided significant breakthroughs in the overall,three-dimensional exploration and shale oil exploration in the Cangdong Sag.
基金supported by the Major National Science and Technology Programs of China(No.2016E-0202,No.QGYQZYPJ2022-1).
文摘In contrast to well-studied rift basins in NE China,the Hailar Basin has received relatively less attention regarding the combined patterns of different types of grabens and half-grabens.This study aims to explore whether the combined patterns of grabens in the Hailar Basin exhibit similar characteristics to those in other NE China rift basins and to identify the underlying causes.To achieve this,a comprehensive analysis of the major fault systems and the combined patterns of faulted sub-depressions,as well as their controlling mechanisms,was conducted.This analysis utilized the latest 3D seismic data that cover nearly the entire Beier Depression.Three groups of pre-existing fault systems were observed in the basement of the Beier Depression,and they are the NEE-EW-trending fault systems,the NE-trending fault systems,and the NW-trending fault systems.The NEE-EW-trending fault systems were distributed in the central part of the Beier Depression and primarily controlled the sedimentary filling of the Tongbomiao and the Lower Nantun Formations.The NE-trending fault systems were distributed in the southwestern part of the Beier Depression and primarily controlled the sedimentary filling of the Upper Nantun Formations.The NW-trending fault systems were distributed rarely in the Beier Depression.Five kinds of combined patterns of the sub-depressions were developed in the Beier Depression,and they are the parallel,en echelon,face-to-face,back-to-back,and S-shaped combined patterns.They were controlled by the NEE-EW-trending and the NE-trending fault systems with different orientations,arrangements,and activation sequences.
文摘On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.
基金the National Natural Science Foundation of China(NSFC)program(41472084)the China Earthquake Administration,Institute of Seismology Foundation(IS201526246)for providing funding and for allowing publication of this paper
文摘The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional(3-D)seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone(CTZ) which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized:(i) the western multi-stage faults slope;(ii) the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan subbasin and other similar rifted basins of the Beibuwan Basin in South China Sea.
基金Supported by the China National Science and Technology Major Project(2016ZX05006-005)PetroChina Science and Technology Major Project(2018E-11)
文摘Based on the merged 3 D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kongdian Formation in the trough area of Cangdong sag, Bohai Bay Basin. A conventional-unconventional hydrocarbon accumulation pattern in the trough area of rifted basin was revealed. The reservoir forming elements in the trough area of Cangdong sag have a zonation feature in terms of reservoirs and source rocks. There are two types of reservoir forming models, primary trough and reformed trough. The formation and evolution of trough controlled the orderly distribution of conventional oil to unconventional oil in the trough. Particularly, structural reservoirs occur in the upper part of the trough, stratigraphic-lithologic reservoirs are likely to form in the delta front deposits at the outer ring of trough, the middle ring transitional belt is the favorable site for tight oil reservoirs, while the fine grain deposits zone in the inner ring is shale oil and gas exploration area. The study has pointed out the new domains and directions for searching reserves in the secondary exploration of mature oilfields.
基金financially supported by the National Science and Technology Major Project(Grant No.2019005705)。
文摘Rifted margins in the central South Atlantic portray spatial variability in terms of preserved width and thickness,which relates to complex rift-related fault activities.However,there is still a lack of systematic and quantitative explanations for the causes of the variations that are observed along the paired rifts.To elucidate this issue,2D viscous-plastic thermomechanical numerical models are applied to capture the behavior of deformation,in which we investigate the effects of extensional rate,crustal strength and thickness on crust-mantle coupling,and timing of transition from rifting to breakup.Our numerical experiments demonstrate that crust-mantle decoupling accounts for crustal hyperextension,and that incorporating moderate-intensity rheology into lower crust may yield insights into the hyper-extended crust and asymmetric architecture observed in the central South Atlantic.The results also suggest that undulations in lithospheric basement cause asymmetric mantle upwelling.The lower crust of fold belts takes priority to be thermally weakened over craton and induces rift migration simultaneously.A new mechanism for the formation of failed rift is described,where the mechanical decoupling derived from thermally weakened lower crust gives access to dual rift migration.These results reinforce the interpretation on how crustal rheology shapes margins architectures and highlight the first-order effects of crust-mantle coupling.
文摘A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in the Shiwu Rifled Basin and its indication of the water-rock interaction processes. The hydrodynamic field controls the spacial distribution of formation water. Due to the penetration of meteoric water, the salinity is below 4,500mg/L at the basin margin and the severely faulted central ridge and increases basin ward to 7,000-10,000mg/L. The vertical change of formation water can be divided into 3 zones, which correspond respectively to the free replacement zone (〈1,250m), the obstructed replacement zone (1,250m-1,650m) and the lagged zone (〉 1,650m) in hydrodynamics. In the free replacement zone, the formation water is NaHCO3-type with its salinity increased to 10,000mg/L. The formation water in the obstructed replacement zone is Na2SO4-type with its salinity decreased to 5,000mg/L-7,000mg/L because of the dehydration of mud rocks. The formation water in the lagged zone is CaC12-type, but its salinity decreases sharply at a depth of 1,650m and then increases vertically downward to 10,000mg/L. This phenomenon can be best explained by the osmosis effect rather than the dehydration of mud rocks. The relationships between Cl^--HCO3^- and Na^++K^+-Ca^2+ show that the initial water-rock interaction is the dissolution of NaCl and calcium-beating carbonate, causing an increase of Na^+-K^+-Ca^2+-Cl^- and salinity. The succeeding water-rock interaction is albitization, which leads to a decrease of Na^+ and an increase of Ca2+ simultaneously, and generates CaCl2-type fluid. The above analysis shows that the geochemical evolution of formation water is governed by the water-rock interactions, while its spacial distribution is controlled by the hydrological conditions. The water-rock interaction processes are supported by other geological observations, suggesting that formation water geochemistry is a viable method to trace the fluid-rock interaction processes and has broad applications in practice.
基金Supported by the China National Science and Technology Major Project(2011ZX05006-005)
文摘In order to reveal the development mechanism of high-quality clastic rock reservoir, the basic characteristics of Sha-3 Member of the Shahejie Formation in the Raoyang sag, Bohai Bay Basin, are analyzed based on cores observation, thin-sections and SEM images, and petrophysical properties measurements as well. It is found that high-mature composition and texture, early oil charging, and dissolution are the main factors controlling the formation and preservation of pores in deep reservoirs. Compaction is the major factor destructing pores, whereas formation overpressure is conducive to the preservation of original pores, high compositional and medium textural maturity can enhance the resistance capacity to compaction and protect primary pores. Early oil charging could lead to temporary cessation of diagenesis and thus inhibit the cementation. When organic acids entered reservoir formations, considerable amounts of secondary pores were formed, leading to the local improvement of petrophysical properties. When predicting good quality belt in exploration of deep basin, it is recommended that the superimposing effects of the multiple factors(overpressure, early oil charging, compositional and textural maturity, diagenesis) be taken into consideration.
基金supported by NSERC Discovery Grants to K. Larson and S. Piercey and NSF Grant No. 1119380 to J. Cottle
文摘Orthogneiss within the Paleoproterozoic strata of Lesser Himalayan sequence across the Himalaya has been variably linked to development in a continental arc setting, Indian basement, or a continental rift.New whole rock and trace element geochemical data and U/Pb zircon geochronology indicate that the granitoid protoliths to these rocks were derived from upper crustal sources in the Paleoproterozoic and have within-plate, A-type affinities. This is consistent with their generation in a rifted margin and is compatible with paleogeographic reconstructions that indicate an open boundary for present-day northern India in the Paleoproterozoic.
基金supported by the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(Grant No.XDA0430102)the Deep Earth Probe and Mineral Resources Exploration(Grant No.2024ZD1001103)。
文摘Continental rifting is one of the fundamental components in the Wilson cycle,and its comprehensive investigation is essential for understanding the geodynamic mechanisms of plate tectonics.Furthermore,continental rifts host significant mineral and hydrocarbon resources and also preserve valuable records of climatic environmental evolution.This study presents a systematic synthesis of their classification and magmatism after reviewing the research history of continental rifts.The formation and evolution of continental rifts are spatiotemporally associated with magmatic activity.Based on magmatic productivity,rifted margins that develop from successful continental rifts are categorized into different types,including magma-rich and magmapoor,with the intermediate category encompassing margins developed in active continental margin settings.Previous studies and systematically compiled data in this study indicate that distinct magmatic rock assemblages are characteristic of different rift types.Magma-rich rifts and rifted margins typically exhibit bimodal magmatism,including highly alkaline–silica poor alkaline rocks during the early rifting stage,alkalic basalt–trachyandesite–peralkaline rhyolite,transitional basalt and rhyolite during the evolutionary stage,and predominantly tholeiitic basalt during the final stage.Magma-poor rifted margins primarily consist of mafic rocks,including carbonatite and alkaline rocks during the initial rifting stage,followed by alkalic and tholeiitic basalts during the evolutionary stage.The lithospheric mantle in magma-poor rifted margins experienced extensive melt-induced metasomatism,making it an important research target for understanding continental rifting processes and magmatic evolution.In active continental margin rifts,magmatic rocks are dominated by bimodal magmatism,primarily encompassing the entire calcalkaline suite from basalt to rhyolite,along with minor alkalic basalt.During continental rifting,these magmatic processes effectively weaken the lithosphere,localize deformation,and ultimately facilitate the rifting progression to continental breakup.Further questions meriting attention include:(1)petrogenesis and geodynamics of magmatic rocks in continental rifts;(2)controlling factors for success or failure of continental rifting;(3)the nature of the ocean-continent transition and the process of transitioning from continental rifting to seafloor spreading;(4)controlling factors for the generation of magma-rich versus magma-poor rifted margins;and(5)the impact of continental rifting on climate change.Addressing these questions necessitates integrated approaches combining systematic geological,geochemical,and geophysical investigations of both modern and ancient rift systems with advanced techniques of numerical geodynamic modeling.
基金supported by the research award project RI/0220-10000618-001 to Sheth from the Industrial Research and Consultancy Centre(IRCC)IIT Bombay.Shekhar and Astha were supported by Prime Minister’s Research Fellowships(PMRF,File Nos.1303100 and 1303103,respectively)+4 种基金Naik was initially supported by an IIT Bombay Institute Post-Doctoral Fellowship(File No.HR-1(HRM-1)/Rect/33/2022/20003002)subsequently by a Goa State Research Foundation Post-doctoral Fellowship(File No.PDF2024003)We express our sincere gratitude to Prof.N.Prabhakar for kindly granting us access to the WD-XRF spectrometry facility(SIP ProjectWBS Code:IN/22-1111039E-01)the ICP-MS facility,and the SERB-funded EPMA National Facility(IRPHA Grant No.IR/S4/ESF-16/2009(G))in the Department of Earth Sciences,IIT Bombay.
文摘Large-scale Danian-age(post-K/Pg boundary)Deccan magmatism is well known from the Mumbai metropolitan area,located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin.This compositionally diverse late-Deccan magmatic suite contains subaerial tholeiitic lavas and dykes typical of the main Deccan province,with many features atypical of the Deccan,such as spilitic pillow lavas,“intertrappean”sediments(often containing considerable volcanic ash),rhyolitic lavas and tuffs,gabbro-granophyre intrusions,and trachyte intrusions containing alkali basalt enclaves.Most of these units,previously dated at 62.5 Ma to 61 Ma,are contemporaneous with or slightly postdate the 62.5 Ma India-Seychelles continental breakup and Panvel flexure formation.In the Dongri-Uttan area,two samples of a>50-m-thick,columnar-jointed rhyolite from the Darkhan Quarry and from a section behind the current Uttan Sagari Police Station have previously been dated at 62.6±0.6 Ma and 62.9±0.2 Ma(^(40)Ar/^(39)Ar,2r errors).New exposures reveal that these two statistically indistinguishable 40 Ar/39 Ar ages correspond to two distinct rhyolite units,separated by well-bedded silicic ash.The columnar rhyolites are microcrystalline,composed of quartz and alkali feldspar,with rare small(1–2 mm),altered feldspar phenocrysts,and no recognisable relict vitroclasts.Given the westerly structural dip,most of their lateral extent is submerged under the Arabian Sea,and we consider them to be possible flood rhyolite lavas.We interpret the ash beds,composed of pumice clasts and glass shards,as a low-grade(nonwelded)vitric ash,derived from a possibly distal Plinian eruption and deposited by fallout.The lavas and ash are peraluminous rhyolites.The lavas are Sr-Ba-poor and Rb-Zr-Nb-rich,and show“seagull-shaped”rare earth element patterns with deep negative europium anomalies.These crystal-poor lavas are“hot-dry-reduced”rhyolites typical of intraplate,continental rift and rifted margin settings.The very different high-field strength element contents of the lavas and the ash indicate compositionally distinct magma batches.The 62.5 Ma Dongri-Uttan sequence provides clear evidence for rapid silicic eruptions of effusive and explosive nature,alternating with each other and sourced from distinct magma chambers and eruptive vents.A newly identified,highly feldspar-phyric trachyte intrusion marks the last phase of magmatic activity in the area,corresponding with late-stage trachyte-syenite intrusions exposed in coastal western India and the Seychelles,and shows that the Mumbai rhyolites and trachytes form a compositional continuum.
文摘Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the western coasts of Africa and the eastern shore of South America and the morphotectonic geometry of the rift basins of South America, conditioning the morphostructure of the Andean chain and the current geoforms of the foreland.
基金jointly supported by the Natural Science Foundation of China(Nos.42172056,41772052)。
文摘A-type rocks have drawn considerable attention in the past few decades due to their distinctive mineralogical and geochemical fingerprints and prospective utility for geodynamic reconstruction of the lithosphere.A comprehensive study,involving zircon U-Pb geochronology,wholerock elemental and Sr-Nd-Pb isotopic geochemistry,was undertaken to elucidate the origin and evolutionary process for syenites from the Daguiping area in the North Daba mountains,South Qinling belt.The syenites revealed an Ordovician igneous crystallization age of 454.4±17 Ma,coeval with the neighboring mafic rocks.All samples show high SiO_(2),LREEs,and HFSEs(Nb,Ta,Zr and Hf)contents,with negative to slightly positive Eu(Eu/Eu^(*)=0.78-1.08)anomalies.The geochemical characteristics of the Daguiping syenites imply that they are of A_1-type magmatic affinity,which is confirmed by their high total alkali levels(8.57 wt.%-11.94 wt.%),Zr+Nb+Ce+Y contents(738.00 ppm-1734.78 ppm),and 10000×Ga/Al ratios(3.25-4.22),as well as low Y/Nb ratios(0.30-0.40).Our samples exhibit a wide range of initial^(87)Sr/^(86)Sr ratios of 0.701943 to 0.709802 and a narrow range of^(143)Nd/^(144)Nd ratios of 0.512205-0.512246 withε_(Nd)(t)values from+3.0 to+3.8.These rocks display(^(206)Pb/^(204)Pb)_(initial),(^(207)Pb/^(204)Pb)_(initial),and(^(208)Pb/^(204)Pb)_(initial)ratios range from 17.96 to 18.62,15.55 to 15.59,and 36.87 to 38.22,respectively.All of the isotopic data indicate that the syenites were essentially mantle-derived.A cogenetic source for the Daguiping syenites and coeval mafic rocks in the South Qinling belt is supported by their uniform Sr-Nd-Pb isotope data and linear major/trace elemental changes,with prolonged fractional crystallization considered as the essential mechanism for these geochemical discrepancies.Mass-balance and Rayleigh fractionation modeling estimate~85 vol%fractional crystallization involving amphibole,clinopyroxene,plagioclase,Kfeldspar,biotite,Fe-Ti oxide,and quartz,to reproduce the compositional varieties between a coeval mafic rock and the Daguiping syenites.The Daguiping syenites and associated alkaline rocks were likely related to a rifting episode triggered by asthenospheric upwelling,which led to the South Qinling detaching from the South China Block along the Mianlue suture during the Early Paleozoic.
基金financially supported by the National Science Foundation of China(No.41920104010)the China Postdoctoral Science Foundation(No.2024M762767)+3 种基金the Fundamental Research Funds for the Central University,CHD(No.300102264104)by the Postdoctoral Fellowship Program of CPSF(No.GZC20241444)supported by Fondazione Cariplo and Fondazione CDP(No.2022-1546_001)by the Italian Ministry of Education,MUR(Project Dipartimenti di Eccellenza,TECLA,Department of Earth and Environmental Sciences,University of Milano-Bicocca)。
文摘Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.
文摘As 1.5 million wildebeest pierce the dawn mist of the East African Rift Valley and the roar of lions merges with the cry of zebras beneath sprawling acacia trees,this land unveils life at its rawest-majestic and achingly fragile.
基金supported by grant D86-RALMI23CIVIE_01 awarded by the Italian Ministry of University and Research under the Program for Young Researchers“Rita Levi Montalcini”.
文摘A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence.
基金Supported by the National Natural Science Foundation of China(42472190)Chongqing Natural Science Foundation Innovation and Development Joint Fund Project(CSTB2022NSCQ-LZX0020)Chongqing Talent Innovation and Entrepreneurship Leading Talent Project(0255-19230101042)。
文摘Taking the Wangfu fault depression in the Songliao Basin as an example,on the basis of seismic interpretation and drilling data analysis,the distribution of the basement faults was clarified,the fault activity periods of the coal-bearing formations were determined,and the fault systems were divided.Combined with the coal seam thickness and actual gas indication in logging,the controls of fault systems in the rift basin on the spatial distribution of coal and the occurrence of coal-rock gas were identified.The results show that the Wangfu fault depression is an asymmetrical graben formed under the control of basement reactivated strike-slip T-rupture,and contains coal-bearing formations and five sub-types of fault systems under three types.The horizontal extension strength,vertical activity strength and tectono-sedimentary filling difference of basement faults control vertical stratigraphic sequences,accumulation intensity,and accumulation frequency of coal seam in rift basin.The structural transfer zone formed during the segmented reactivation and growth of the basement faults controls the injection location of steep slope exogenous clasts.The filling effect induced by igneous intrusion accelerates the sediment filling process in the rift lacustrine area.The structural transfer zone and igneous intrusion together determine the preferential accumulation location of coal seams in the plane.The faults reactivated at the basement and newly formed during the rifting phase serve as pathways connecting to the gas source,affecting the enrichment degree of coal-rock gas.The vertical sealing of the faults was evaluated by using shale smear factor(SSF),and the evaluation criterion was established.It is indicated that the SSF is below 1.1 in major coal areas,indicating favorable preservation conditions for coal-rock gas.Based on the influence factors such as fault activity,segmentation and sealing,the coal-rock gas accumulation model of rift basin was established.
基金supported by the National Natural Science Foundation of China(Nos.42172109,41872113,42172108)China National Petroleum Corporation-China University of Petroleum(Beijing)strategic cooperation science and technology project(ZLZX2020-02)+2 种基金Science Foundation of China University of Petroleum(Beijing)(Nos.2462020BJRC002,2462020YXZZ020)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1166)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201511).
文摘Previous studies have indicated that sediment gravity flow deposits developed in lacustrine active extensional rift basins are primarily influenced by tectonics and to a lesser extent by climate.Our present work reveals that climate can obscure the effect of tectonic subsidence by regulating sediment supply;conversely,tectonics can impede the sedimentary manifestation of climatic impacts.Here a case study has been presented to assess the impact of climate-modulated rapid lake-level rise and tectonic subsidence on the development of coarse-grained gravity flow deposits in the Dongying rift margin of the Bohai Bay Basin,eastern China.The lithofacies analysis reveals frequent bed amalgamation,abundant thick massive coarse-grained deposits,widespread cross bedding and plant fragments,and incomplete composite bed formed by high-energy erosion,indicating that the hyperpycnal flow is an important mechanism driving the deposition of these coarse-grained sediments.Detailed sequence stratigraphic analysis and sediment dispersal pattern suggest that the long-striped nearshore subaqueous fan systems induced by outburst-flood hyperpycnal flow distributed along the border fault,are primarily controlled by long-term tectonics,while the rapid rise of lake level driven by short-term climate change possibly intensifies seasonal flood-generated hyperpycnal flow occurrences and consequently promotes the basinal fan progradation.The maximum scale of these coarse-grained gravity flow deposits of the basinal fan systems are typically attained during the transgressive systems tract,which deviates from the classical sequence stratigraphic model.Furthermore,it presented a continuous transition from the proximal to the distal part,encompassing traction flows and turbidity currents during the periods of relatively stable tectonics.Nevertheless,gravel-rich debris flows appear to predominate the dispersion of coarse-grained sediments during periods characterized by intense tectonic activity.The coarse-grained gravity flow deposits in the lacustrine rift margin reported here,challenge the traditional beliefs:this study suggests that subaqueous deposits abundantly preserved in the transgressive setting.
基金supported by the National Natural Science Foundation of China(No.24A20592).
文摘The Cambrian Qiongzhusi Formation in the Sichuan Basin harbors significant potential for shale gas harvesting.However,systematic disparities in mineral composition and reservoir architecture have been observed between intra-and extra-trough reservoirs within the Deyang-Anyue Rift Trough.These variations were primarily determined by divergences in the sedimentary environments developed during the evolution of the rift trough,which were a main factor in fostering the heterogeneous distribution of shale gas enrichment found today.However,the genetic mechanisms that govern reservoir heterogeneity across distinct structural domains(intra-trough,trough margin,and extra-trough)remain poorly understood,particularly regarding the coupling relationships between depositional environments,reservoir characteristics,and gas-bearing properties.This study adopts a multidisciplinary approach to investigating this issue that integrates core analysis,well-log interpretations,and geochemical data.Through systematic comparisons conducted using X-ray diffraction mineralogy,organic carbon quantification,and spontaneous imbibition experiments,we characterize the mineral assemblages,organic geochemical signatures,and pore structures found across the three structural domains of the Deyang-Anyue Rift Trough.The key findings are as follows:(1)The depositional environment is the main influence on reservoir distribution and organic matter enrichment,with intra-trough shales exhibiting a higher abundance of organic matter than their trough-margin and extra-trough counterparts.(2)Enhanced brittleness in intra-trough zones correlates with the predominance of biogenic silica therein.(3)Synergistic organic-inorganic interactions govern pore system development.(4)Gas-bearing capacity is jointly determined by effective porosity and organic matter content.These findings establish the rift trough as a preferential exploration target,providing critical geological guidance for optimizing shale gas exploration strategies in the Cambrian Qiongzhusi Formation.