High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence ...High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence of the straight section on the spatial mode filtering. When Lrw is 450μm, the devices have the optimized maxi- mum output power and beam quality,and the output power P is 4. 28W. The beam propagation ratio M2 is 3. 79 at 1W.展开更多
By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at ...By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.展开更多
We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to f...We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.展开更多
文摘High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence of the straight section on the spatial mode filtering. When Lrw is 450μm, the devices have the optimized maxi- mum output power and beam quality,and the output power P is 4. 28W. The beam propagation ratio M2 is 3. 79 at 1W.
文摘By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.
基金the financial support of TUB-ITAK via Project 107E163.
文摘We report comparatively on fabrication of two-section ridge-waveguide tapered 3 quantum well (QW) InGaAsP/InP (1300 nm) and 5 QW AlGaInAs/InP (1550 nm) diode lasers. Gas mixtures of CCl2F2/O2 and H2/CH4 were used to form ridge-waveguide on the lasers with InP-based material structures. As known, chlorine- and hydro-carbon based gases are used to fabricate ridge-waveguide structures. Here, we show the difference between the structures obtained by using the both gas mixtures in which surface and sidewall structures as well as performance of the lasers were analysed using scanning electron microscopy. It is demonstrated that gas mixtures of CCl2F2/O2 highly deteriorated the etched structures although different flow rates, rf powers and base pressures were tried. We also show that the structures etched with H2/CH4 gas mixtures produced much better results that led to the successful fabrication of two-section devices with ridge-waveguide. The lasers fabricated using H2/CH4 were characterized using output power-current (P-I) and spectral results.