This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomou...This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomous affine constraints are shown. Next, an integrating algorithm that calculates independent first integrals is derived. In addition, the existence of an inverse function utilized in the algorithm is investigated. Then, an example is shown in order to evaluate the effectiveness of the proposed method. By using the proposed integrating algorithm, we can easily calculate independent first integrals for given constraints, and hence it can be utilized for various research fields.展开更多
This paper presents a complete integrability condition for fully rheonomous affine constraints in terms of the rheonomous bracket. We first define fully rheonomous affine constraints and develop geometric representati...This paper presents a complete integrability condition for fully rheonomous affine constraints in terms of the rheonomous bracket. We first define fully rheonomous affine constraints and develop geometric representation for them. Next, the rheonomous bracket is explained and some properties of it are derived. We then investigate a necessary and sufficient condition on complete integrability for the fully rheonomous affine constraints based on the rheonomous bracket as an extension of Frobenius’ theorem. The effectiveness and the availability of the new results are also evaluated via an example.展开更多
In this paper, integrability conditions and an integrating algorithm of fully rheonomous affine constraints (FRACs) for the partially integrable case are studied. First, some preliminaries on the FRACs are illustrated...In this paper, integrability conditions and an integrating algorithm of fully rheonomous affine constraints (FRACs) for the partially integrable case are studied. First, some preliminaries on the FRACs are illustrated. Next, necessary and sufficient conditions on the partially integrable case for the FRACs are derived. Then, an integrating algorithm to calculate independent first integrals of the FRACs for the partially integrable case is derived. Moreover, the existence of an inverse function utilized in the algorithm is proven. After that, an example is presented for evaluation of the effectiveness of the proposed method. As a result, it turns out that the proposed integrating algorithm can easily calculate independent first integrals for given partially integrable FRACs, and thus this new algorithm is expected to be applied to various research fields.展开更多
The main purpose of the paper consists in illustrating a procedure for expressing the equations of motion for a general time-dependent constrained system. Constraints are both of geometrical and differential type. The...The main purpose of the paper consists in illustrating a procedure for expressing the equations of motion for a general time-dependent constrained system. Constraints are both of geometrical and differential type. The use of quasi-velocities as variables of the mathematical problem opens the possibility of incorporating some remarkable and classic cases of equations of motion. Afterwards, the scheme of equations is implemented for a pair of substantial examples, which are presented in a double version, acting either as a scleronomic system and as a rheonomic system.展开更多
The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic e...The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.展开更多
文摘This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomous affine constraints are shown. Next, an integrating algorithm that calculates independent first integrals is derived. In addition, the existence of an inverse function utilized in the algorithm is investigated. Then, an example is shown in order to evaluate the effectiveness of the proposed method. By using the proposed integrating algorithm, we can easily calculate independent first integrals for given constraints, and hence it can be utilized for various research fields.
文摘This paper presents a complete integrability condition for fully rheonomous affine constraints in terms of the rheonomous bracket. We first define fully rheonomous affine constraints and develop geometric representation for them. Next, the rheonomous bracket is explained and some properties of it are derived. We then investigate a necessary and sufficient condition on complete integrability for the fully rheonomous affine constraints based on the rheonomous bracket as an extension of Frobenius’ theorem. The effectiveness and the availability of the new results are also evaluated via an example.
文摘In this paper, integrability conditions and an integrating algorithm of fully rheonomous affine constraints (FRACs) for the partially integrable case are studied. First, some preliminaries on the FRACs are illustrated. Next, necessary and sufficient conditions on the partially integrable case for the FRACs are derived. Then, an integrating algorithm to calculate independent first integrals of the FRACs for the partially integrable case is derived. Moreover, the existence of an inverse function utilized in the algorithm is proven. After that, an example is presented for evaluation of the effectiveness of the proposed method. As a result, it turns out that the proposed integrating algorithm can easily calculate independent first integrals for given partially integrable FRACs, and thus this new algorithm is expected to be applied to various research fields.
文摘The main purpose of the paper consists in illustrating a procedure for expressing the equations of motion for a general time-dependent constrained system. Constraints are both of geometrical and differential type. The use of quasi-velocities as variables of the mathematical problem opens the possibility of incorporating some remarkable and classic cases of equations of motion. Afterwards, the scheme of equations is implemented for a pair of substantial examples, which are presented in a double version, acting either as a scleronomic system and as a rheonomic system.
文摘The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.