Hairong Wang, Yaoqiang Chen, Qiulin Zhang, Qingchao Zhu, Maochu Gong, Ming Zhao( Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichua...Hairong Wang, Yaoqiang Chen, Qiulin Zhang, Qingchao Zhu, Maochu Gong, Ming Zhao( Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China展开更多
Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and N...Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.展开更多
Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron sp...Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).Through the test of catalytic partial oxidation of methane(CPOM),Ni/CeO2-ZrO2-Al2O3 displayed the highest activity,which resulted from its largest BET area and best NiO dispersion.Furthermore,Ni/CeO2-ZrO2-Al2O3 maintained a long-time stability in CPOM,which was attributed to its best coking resistance among all the prepared catalysts.展开更多
The catalytic behaviors of Pd (1.4 wt.%) catalysts supported on CeO2-ZrO2 promoted with La2O3 were investigated for methanol decomposition. The measurements of inductively coupled plasma emission spectroscopy (ICP...The catalytic behaviors of Pd (1.4 wt.%) catalysts supported on CeO2-ZrO2 promoted with La2O3 were investigated for methanol decomposition. The measurements of inductively coupled plasma emission spectroscopy (ICP), N2 adsorption-desorption (BET), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and oxygen storage capacity (OSC) were used to characterize the properties of catalysts. The catalysts' activities were tested in a fixed bed continuous flow reactor operating under atmospheric pressure. The Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 catalyst exhibited the best activity. The reasons for this were twofold: (1) doping of La improved effectively textural properties of CeO2-ZrO2 oxygen storage materials, and (2) Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 possessed super oxygen storage property and reducibility due to the existence of lattice defect oxygen or mobile oxygen, which helped to re-oxidize zerovalent Pd0 to a partly oxidized Pdδ+. By introducing 5 wt.%La2O3, the specific surface area of the sample increased, but declined if further increasing the content of La2O3 to 10 wt.%.展开更多
The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-...The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.展开更多
基金the National Natural Science Foundation of China (20773090)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070610026, 200806100009)
文摘Hairong Wang, Yaoqiang Chen, Qiulin Zhang, Qingchao Zhu, Maochu Gong, Ming Zhao( Key Laboratory of Green Chemistry & Technology of Ministry Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
基金supported by the National Natural Science Foundation of China (No. 20773090, 20803049)the National High Technology Researchand Development Program of China (863 Program, No. 2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education(20070610026)
文摘Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.
基金Project supported by State Key Fundamental Research Project(G1999022400)
文摘Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).Through the test of catalytic partial oxidation of methane(CPOM),Ni/CeO2-ZrO2-Al2O3 displayed the highest activity,which resulted from its largest BET area and best NiO dispersion.Furthermore,Ni/CeO2-ZrO2-Al2O3 maintained a long-time stability in CPOM,which was attributed to its best coking resistance among all the prepared catalysts.
基金Project supported by the Programs Foundation of Ministry of Education of China (20070610026)the National Natural Science Foundation of China (20773090, 20803049)
文摘The catalytic behaviors of Pd (1.4 wt.%) catalysts supported on CeO2-ZrO2 promoted with La2O3 were investigated for methanol decomposition. The measurements of inductively coupled plasma emission spectroscopy (ICP), N2 adsorption-desorption (BET), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and oxygen storage capacity (OSC) were used to characterize the properties of catalysts. The catalysts' activities were tested in a fixed bed continuous flow reactor operating under atmospheric pressure. The Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 catalyst exhibited the best activity. The reasons for this were twofold: (1) doping of La improved effectively textural properties of CeO2-ZrO2 oxygen storage materials, and (2) Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 possessed super oxygen storage property and reducibility due to the existence of lattice defect oxygen or mobile oxygen, which helped to re-oxidize zerovalent Pd0 to a partly oxidized Pdδ+. By introducing 5 wt.%La2O3, the specific surface area of the sample increased, but declined if further increasing the content of La2O3 to 10 wt.%.
基金Project supported by the National‘973’Project(2004CB719503)Petro China(W050509-01-05)
文摘The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.