Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-network...Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structureproperty relationship of RILNs.展开更多
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons...An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.展开更多
Surfactant-enhanced remediation (SER) is an effective method for the removal of volatile organic compounds (VOCs) from contaminated soils and groundwater.To reuse the surfactant the VOCs must be separated from the...Surfactant-enhanced remediation (SER) is an effective method for the removal of volatile organic compounds (VOCs) from contaminated soils and groundwater.To reuse the surfactant the VOCs must be separated from the surfactant solutions.The water solubility of VOCs can be enhanced using reversible surfactants with a redox-acive group,(ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) and (ferrocenylmethyl)tetradecanedimethylammonium bromide (Fc14),above and below their critical micelle concentrations (CMC) under reducing (I + ) and oxidative (I 2+ ) conditions.The CMC values of Fc12 and Fc14 in I + are 0.94 and 0.56 mmol/L and the solubilization of toluene by Fc12 and Fc14 in I + for toluene is higher than the solubilization achieved with sodium dodecyl sulfate,cetyltrimethylammonium bromide and Trition X-114.The solubilization capacity of the ferrocenyl surfactants for each tested VOCs ranked as follows: ethylbenzene toluene benzene.The solubilities of VOCs by reversible surfactant in I + were 30% higher than those in I 2+ at comparable surfactant concentrations.The effects of Fc14 concentrations on VOCs removal efficiency were as follows: benzene toluene ethylbenzene.However,an improved removal efficiency was achieved at low ferrocenyl surfactant concentrations.Furthermore,the reversible surfactant could be recycled through chemical approaches to remove organic pollutants,which could significantly reduce the operating costs of SER technology.展开更多
Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniqu...Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.展开更多
A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyt...A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyte that mitigates hydrogen evolution by transforming water molecules more inert.The electrolyte comprises primarily ZnCl_(2) and LiCl as an additive,both of which are inexpensive salts.The O-H covalent bonds in water get strengthened in a chemical environment that has fewer hydrogen bonding interactions and a greater number of Zn-Cl superhalides,as suggested by integrated characterization and simulation.As a result,the average Coulombic efficiency of zincmetal anode is raised to an unprecedented>99.7%at 1mA cm^(−2).In the new electrolyte,the plating/stripping processes leave the zinc-metal anode dendrite-free,and the zinc-metal anode delivers stable plating/stripping cycles for 4000 hours with an areal capacity of 4 mAh cm^(−2) at 2mA cm^(−2).Furthermore,the high Coulombic efficiency of zinc-metal anode in the ZnCl_(2)-LiCl mixture electrolyte is demonstrated in full cells with a limited anode.The V_(2)O_(5)·H_(2)O||Zn full cell with an N/P mass ratio of 1.2 delivers a stable life of more than 2500 cycles,and the LiMn_(2)O_(4)||Zn hybrid cell with an N/P mass ratio of 0.6 exhibits 1500 cycles in its stable life.展开更多
Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unatt...Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics.展开更多
A chirality induced helicity method has been developed to modulate the peptide's biophysical and biochemical properties. We report herein a novel approach for reversibly switching the conformation of short constraint...A chirality induced helicity method has been developed to modulate the peptide's biophysical and biochemical properties. We report herein a novel approach for reversibly switching the conformation of short constraint a-helical peptides through alkylation of the in-tether thioether and dealkylation of the chiral sulfonium. This traceless redox sensitive tagging strategy broadened our scope of CIH (chirality induced helicity) strategy and provided a valuable approach to functionalize the peptide tether.展开更多
The fabrication of liquid-free ionic conductive elastomers(ICEs)that can function as flexible temperature sensors with high sensitivity,fast response time,and efficient recyclability is a great challenge.In this study...The fabrication of liquid-free ionic conductive elastomers(ICEs)that can function as flexible temperature sensors with high sensitivity,fast response time,and efficient recyclability is a great challenge.In this study,novel liquid-free ICEs are conveniently fabricated through the complexation of 4-carboxybenzaldehyde-grafted poly(vinyl alcohol)(CPVA)with well-designed solid quaternary ammonium(QA)molecules bearing bifunctional hydrogen-bonding moieties.The resulting CPVA-QA elastomers,which are highly elastic and adhesive to diverse surfaces,exhibit a tensile strength of 6.6 MPa,a toughness of 14.7 MJ m^(-3),and a Young’s modulus of 0.15 MPa.These elastomers have a hydrogen-bonded network structure where the bifunctional QA molecules significantly suppress polymer chain entanglements.Benefitting from the thermally sensitive hydrogen bonds and the substantially reduced chain entanglements,the CPVA-QA elastomers show a high chain mobility upon temperature elevation,which facilitates ion transport within the CPVA-QA elastomers.Consequently,the CPVA-QA elastomer-based temperature sensors show an outstanding temperature resolution(0.05℃),a fast response time over a wide temperature range,and a record-high thermosensitivity of 10.8%K-1.Importantly,the CPVA-QA sensors can be depolymerized under mild conditions to recover their original components in high purity and yields(>96%),enabling closed-loop recycling of the sensors.展开更多
Traditional flame-retardant plastics are technically difficult to chemically recycle.The development of newtypes of flame-retardant plastics that are intrinsically capable of being closed-loop recycled and are suffici...Traditional flame-retardant plastics are technically difficult to chemically recycle.The development of newtypes of flame-retardant plastics that are intrinsically capable of being closed-loop recycled and are sufficiently robust and stable to satisfy their practical application is urgently needed.In this study,closed-loop recyclable flame-retardant plastics with high mechanical strength and excellent chemical resistance are fabricated by cross-linking amino-terminated polyimide(PI-NH_(2))and aldehyde-terminated cyclophosphazene(CP-CHO)with imine bonds.The resultant flame-retardant plastic,which is denoted as PI-CP,exhibits a tensile strength of∼115.6 MPa,Young’s modulus of∼2.5 GPa,and glass transition temperature of 316°C.In the PI-CP plastic,the imine bonds are isolated within hydrophobic microenvironments generated by the rigid and hydrophobic polyimide chains and the benzene ring of cyclophosphazenes.As a result,the PI-CP plastics are highly stable in highly acidic and basic aqueous solutions and other commonly used organic solvents.The PI-CP plastic shows outstanding flame retardancy with a limiting oxygen index value of 48.8%.More importantly,the PI-CP plastic can be depolymerized to generate the original PI-NH_(2)and CPCHO monomers in high yields(∼97%)and purity.The recovered monomers can be used to refabricate the original plastics,establishing highly efficient polymer-monomer-polymer circulation and a sustainable plastics economy.展开更多
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and supe...Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolu- tion fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluores- cent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localiza- tion analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each pho- toactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants, Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.展开更多
The nervous system function requires a precise but plastic neural architecture.The neuronal shape dictates how neurons interact with each other and with other cells,being the morphology of dendrites and axons the cent...The nervous system function requires a precise but plastic neural architecture.The neuronal shape dictates how neurons interact with each other and with other cells,being the morphology of dendrites and axons the central determinant of the functional properties of neurons and neural circuits.The topological and structural morphology of axons and dendrites defines and determines how synapses are conformed.The morphological diversity of axon and dendrite arborization governs the neuron’s inputs,synaptic integration,neuronal computation,signal transmission,and network circuitry,hence defining the particular connectivity and function of the different brain areas.展开更多
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
BACKGROUND The optimal surgical approach for patients with primary glenohumeral osteoarthritis(GHOA)and an intact rotator cuff remains debated.While anatomic total shoulder arthroplasty(TSA)has traditionally been favo...BACKGROUND The optimal surgical approach for patients with primary glenohumeral osteoarthritis(GHOA)and an intact rotator cuff remains debated.While anatomic total shoulder arthroplasty(TSA)has traditionally been favoured,reverse TSA(RTSA)is increasingly utilized.AIM To systematically compare the outcomes of RTSA and TSA in this specific patient population.METHODS A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines.Retrospective comparative studies evaluating RTSA and TSA in patients with GHOA and intact rotator cuff were included.Key outcomes assessed included complication and reoperation rates,patient-reported outcome measures(PROMs),and range of motion.Risk of bias was assessed using the Risk of Bias in Non-randomized Studies of Interventions tool.RESULTS Twelve studies encompassing 1608 patients(580 RTSA,1028 TSA)met inclusion criteria.RTSA was associated with a lower reoperation rate compared to TSA[odds ratio=0.37;95%confidence interval(CI):0.14-0.94;P value=0.04],while no significant difference in overall complication rates was observed(odds ratio=0.47;95%CI:0.19-1.16;P value=0.10).RTSA patients showed superior outcomes in University of California Los Angeles,Simple Shoulder Test,and Shoulder Pain and Disability Index scores;however,the differences did not exceed the minimal clinically important difference.TSA patients had significantly better external rotation(mean difference=-9.0°;95%CI:-13.21 to-5.02;P value<0.0001).No significant differences were found in other range of motion measures or satisfaction scores.The overall methodological quality of included studies was moderate to serious.CONCLUSION In patients with GHOA and an intact rotator cuff,RTSA may offer comparable or improved outcomes to TSA with lower reoperation rates and similar complication profiles.Functional outcomes favour RTSA in certain patientreported outcome measures,while TSA retains an advantage in external rotation.Surgical decision-making should remain individualized based on patient characteristics and functional demands.展开更多
Estrogen is implicated as playing an important role in aging and tumorigenesis of estrogen responsive tissues;however the mechanisms underlying the mitogenic actions of estrogen are not fully understood.Here we report...Estrogen is implicated as playing an important role in aging and tumorigenesis of estrogen responsive tissues;however the mechanisms underlying the mitogenic actions of estrogen are not fully understood.Here we report that estrogen deficiency in mice caused by targeted disruption of the aromatase gene results in a signi-ficant inhibition of telomerase maintenance of telomeres in mouse ovaries in a tissue-specific manner.The inhibition entails a significant shortening of telomeres and compromised proliferation in the follicular granulosa cell compartment of ovary.Gene expression analysis showed decreased levels of proto-oncogene c-Myc and the telomerase catalytic subunit,telomerase reverse transcriptase(TERT),in response to estrogen deficiency.Estrogen replacement therapy led to increases in TERT gene expression,telomerase activity,telomere length and ovarian tissue growth,thereby reinstating ovary development to normal in four weeks.Our data demonstrate for the first time that telomere maintenance is the primary mechanism mediating the mitogenic effect of estrogen on ovarian granulosa cell proliferation by upregulating the genes of c-Myc and TERT in vivo.Estrogen deficiency or over-activity may cause ovarian tissue aging or tumorigenesis,respectively,through estrogen regulation of telomere remodeling.展开更多
Co-delivery of anti-inflammatory siRNA and hydrophilic drug provides a promising approach for the treatment of ulcerative colitis (UC). However, lack of a suitable and efficient co-delivery carrier poses critical chal...Co-delivery of anti-inflammatory siRNA and hydrophilic drug provides a promising approach for the treatment of ulcerative colitis (UC). However, lack of a suitable and efficient co-delivery carrier poses critical challenge against their utilization. We herein developed macrophage-targeting, reversibly crossli nked polymersomes (TKPR-RCP) based on the TKPR-modified, poly(ethyle ne glycol)-b-poly(trimethylene carbonate-codithiolane trimethylene carbonate)-b-polyethylenimine (PEG-P(TMC-DTC)-PEI) triblock copolymer, which could efficiently encapsulate TNF-α siRNA and dexamethasone sodium phosphate (DSP) in their hydrophilic core. The cationic PEI segments provided additional electrostatic interactions with cargo molecules to promote the encapsulatiion, and disulfide crosslinking of the polymersome membrane endowed the TKPR-RCP with high colloidal stability. Because the cationic PEI was embedded in the hydrophilic core, the polymersomes displayed neutral surface charge and thus possessed high serum stability. The TKPR-RCP co-encapsulating TNF-α siRNA and DSP could be efficiently internalized by macrophages (~98%) and undergo redox-responsive membrane de-crosslinking to accelerate cargo release in the cytoplasm, thus inducing efficient gene silencing and anti-inflammatory effect .Intravenous injectio n of the co-delivery TKPR-RCP mediated pote nt and cooperative anti-inflammatory effect in inflamed colons of UC mice, and significantly prevented animals from colonic injury. This study therefore provides a promising approach for the co-delivery of hydrophilic drug/siRNA toward the treatment of inflammatory bowel diseases.展开更多
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.A...Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing,effective management of large chronic skin wounds remains a clinical challenge.Keratinocytes are critical to re-epithelialization and wound healing.Here,we investigated whether exogenous keratinocytes,in combination with a citrate-based scaffold,enhanced skin wound healing.We first established reversibly immortalized mouse keratinocytes(iKera),and confirmed that the iKera cells expressed keratinocyte markers,and were responsive to UVB treatment,and were non-tumorigenic.In a proof-of-principle experiment,we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone,in a mouse skin wound model.Thus,these results demonstrate that iKera cells may serve as a valuable skin epithelial source when,combining with appropriate biocompatible scaffolds,to investigate cutaneous wound healing and skin regeneration.展开更多
MicroRNA-208a(miR-208a)plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion(IR)injury.MiR-208a inhibitor(mI)with complementary RNA sequence can silence the expression of m...MicroRNA-208a(miR-208a)plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion(IR)injury.MiR-208a inhibitor(mI)with complementary RNA sequence can silence the expression of miR-208a,while it is challenging to achieve efficient and myocardium-targeted delivery.Herein,biomimetic nanocomplexes(NCs)reversibly coated with red blood cell membrane(RM)were developed for the myocardial delivery of mI.To construct the NCs,membrane-penetrating helical polypeptide(PG)was first adopted to condense mI and form the cationic inner core,which subsequently adsorbed catalase(CAT)via electrostatic interaction followed by surface coating with RM.The membrane-coated NCs enabled prolonged blood circulation after systemic administration,and could accumulate in the injured myocardium via passive targeting.In the oxidative microenvironment of injured myocardium,CAT decomposed H_(2)O_(2)to produce O_(2)bubbles,which drove the shedding of the outer RM to expose the positively charged inner core,thus facilitated effective internalization by cardiac cells.Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress,NCs effectively ameliorated the myocardial microenvironment,hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions.This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium,and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.展开更多
Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy t...Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepa...Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 52033011, 52173092 and 51973237)Natural Science Foundation of Guangdong Province(Nos. 2019B1515120038, 2020A1515011276 and 2021A1515010417)+4 种基金Science and Technology Planning Project of Guangzhou City (No. 202201011568)the Talented Program of Guizhou University (No. X2022008)Fundamental Research Funds for the Central Universities,Sun Yat-sen University (No. 23yxqntd002)GBRCE for Functional Molecular Engineering,the Youth Innovation Promotion Association,CAS(No. 2020010)Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110908)。
文摘Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structureproperty relationship of RILNs.
基金Projects(51108165, 51178170) supported by the National Natural Science Foundation of China
文摘An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT.
基金supported by the National Nature Science Foundation of China (No.20607008,21077048)the National Science Research Foundation of Yunnan Province Educational Office (No.07Y11138)
文摘Surfactant-enhanced remediation (SER) is an effective method for the removal of volatile organic compounds (VOCs) from contaminated soils and groundwater.To reuse the surfactant the VOCs must be separated from the surfactant solutions.The water solubility of VOCs can be enhanced using reversible surfactants with a redox-acive group,(ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) and (ferrocenylmethyl)tetradecanedimethylammonium bromide (Fc14),above and below their critical micelle concentrations (CMC) under reducing (I + ) and oxidative (I 2+ ) conditions.The CMC values of Fc12 and Fc14 in I + are 0.94 and 0.56 mmol/L and the solubilization of toluene by Fc12 and Fc14 in I + for toluene is higher than the solubilization achieved with sodium dodecyl sulfate,cetyltrimethylammonium bromide and Trition X-114.The solubilization capacity of the ferrocenyl surfactants for each tested VOCs ranked as follows: ethylbenzene toluene benzene.The solubilities of VOCs by reversible surfactant in I + were 30% higher than those in I 2+ at comparable surfactant concentrations.The effects of Fc14 concentrations on VOCs removal efficiency were as follows: benzene toluene ethylbenzene.However,an improved removal efficiency was achieved at low ferrocenyl surfactant concentrations.Furthermore,the reversible surfactant could be recycled through chemical approaches to remove organic pollutants,which could significantly reduce the operating costs of SER technology.
基金the Universidad Autónoma de Nuevo León (Monterrey city, Mexico) for financial support (Project Paicyt-2015)
文摘Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.
基金XJ thanks Oregon State University for AID program support.J-XJ thanks the financial support from the National Natural Science Foundation of China(21574077 and 21304055)111 project(B14041)+3 种基金the Fundamental Research Funds for the Central Universities(GK201801001)CZ is supported by a fellowship from the China Scholarship Council(201706870033)CF is grateful to the U.S.National Science Foundation CAREER grant(CHE-1455353)the support of the femtosecond stimulated Raman instrumentation and the NSF MRI grant(DMR-1920368)for additional support.
文摘A great challenge for all aqueous batteries,including Zn-metal batteries,is the parasitic hydrogen evolution reaction on the low-potential anode.Herein,we report the formula of a highly concentrated aqueous electrolyte that mitigates hydrogen evolution by transforming water molecules more inert.The electrolyte comprises primarily ZnCl_(2) and LiCl as an additive,both of which are inexpensive salts.The O-H covalent bonds in water get strengthened in a chemical environment that has fewer hydrogen bonding interactions and a greater number of Zn-Cl superhalides,as suggested by integrated characterization and simulation.As a result,the average Coulombic efficiency of zincmetal anode is raised to an unprecedented>99.7%at 1mA cm^(−2).In the new electrolyte,the plating/stripping processes leave the zinc-metal anode dendrite-free,and the zinc-metal anode delivers stable plating/stripping cycles for 4000 hours with an areal capacity of 4 mAh cm^(−2) at 2mA cm^(−2).Furthermore,the high Coulombic efficiency of zinc-metal anode in the ZnCl_(2)-LiCl mixture electrolyte is demonstrated in full cells with a limited anode.The V_(2)O_(5)·H_(2)O||Zn full cell with an N/P mass ratio of 1.2 delivers a stable life of more than 2500 cycles,and the LiMn_(2)O_(4)||Zn hybrid cell with an N/P mass ratio of 0.6 exhibits 1500 cycles in its stable life.
文摘Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics.
基金financial support from the National Natural Science Foundation of China(Nos. 21372023 and 81572198)Ministry of Science and Technology of the People's Republic of China(No. 2015DFA31590)+1 种基金the Shenzhen Science and Technology Innovation Committee(Nos. JSGG20140519105550503, JCYJ20150331100849958,JCYJ20150403101146313, JCYJ20160301111338144,JCYJ20160331115853521, JSGG20160301095829250 and ZDSYS201504301539161)the Shenzhen Peacock Program(No. KQTD201103)
文摘A chirality induced helicity method has been developed to modulate the peptide's biophysical and biochemical properties. We report herein a novel approach for reversibly switching the conformation of short constraint a-helical peptides through alkylation of the in-tether thioether and dealkylation of the chiral sulfonium. This traceless redox sensitive tagging strategy broadened our scope of CIH (chirality induced helicity) strategy and provided a valuable approach to functionalize the peptide tether.
基金supported by the National Natural Science Foundation of China(grant nos.21935004 and 22305093).
文摘The fabrication of liquid-free ionic conductive elastomers(ICEs)that can function as flexible temperature sensors with high sensitivity,fast response time,and efficient recyclability is a great challenge.In this study,novel liquid-free ICEs are conveniently fabricated through the complexation of 4-carboxybenzaldehyde-grafted poly(vinyl alcohol)(CPVA)with well-designed solid quaternary ammonium(QA)molecules bearing bifunctional hydrogen-bonding moieties.The resulting CPVA-QA elastomers,which are highly elastic and adhesive to diverse surfaces,exhibit a tensile strength of 6.6 MPa,a toughness of 14.7 MJ m^(-3),and a Young’s modulus of 0.15 MPa.These elastomers have a hydrogen-bonded network structure where the bifunctional QA molecules significantly suppress polymer chain entanglements.Benefitting from the thermally sensitive hydrogen bonds and the substantially reduced chain entanglements,the CPVA-QA elastomers show a high chain mobility upon temperature elevation,which facilitates ion transport within the CPVA-QA elastomers.Consequently,the CPVA-QA elastomer-based temperature sensors show an outstanding temperature resolution(0.05℃),a fast response time over a wide temperature range,and a record-high thermosensitivity of 10.8%K-1.Importantly,the CPVA-QA sensors can be depolymerized under mild conditions to recover their original components in high purity and yields(>96%),enabling closed-loop recycling of the sensors.
基金supported by the National Natural Science Foundation of China(NSFC grant no.21935004).
文摘Traditional flame-retardant plastics are technically difficult to chemically recycle.The development of newtypes of flame-retardant plastics that are intrinsically capable of being closed-loop recycled and are sufficiently robust and stable to satisfy their practical application is urgently needed.In this study,closed-loop recyclable flame-retardant plastics with high mechanical strength and excellent chemical resistance are fabricated by cross-linking amino-terminated polyimide(PI-NH_(2))and aldehyde-terminated cyclophosphazene(CP-CHO)with imine bonds.The resultant flame-retardant plastic,which is denoted as PI-CP,exhibits a tensile strength of∼115.6 MPa,Young’s modulus of∼2.5 GPa,and glass transition temperature of 316°C.In the PI-CP plastic,the imine bonds are isolated within hydrophobic microenvironments generated by the rigid and hydrophobic polyimide chains and the benzene ring of cyclophosphazenes.As a result,the PI-CP plastics are highly stable in highly acidic and basic aqueous solutions and other commonly used organic solvents.The PI-CP plastic shows outstanding flame retardancy with a limiting oxygen index value of 48.8%.More importantly,the PI-CP plastic can be depolymerized to generate the original PI-NH_(2)and CPCHO monomers in high yields(∼97%)and purity.The recovered monomers can be used to refabricate the original plastics,establishing highly efficient polymer-monomer-polymer circulation and a sustainable plastics economy.
文摘Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolu- tion fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluores- cent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localiza- tion analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each pho- toactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants, Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.
基金supported by the Wellcome Trust(grant No.103852).
文摘The nervous system function requires a precise but plastic neural architecture.The neuronal shape dictates how neurons interact with each other and with other cells,being the morphology of dendrites and axons the central determinant of the functional properties of neurons and neural circuits.The topological and structural morphology of axons and dendrites defines and determines how synapses are conformed.The morphological diversity of axon and dendrite arborization governs the neuron’s inputs,synaptic integration,neuronal computation,signal transmission,and network circuitry,hence defining the particular connectivity and function of the different brain areas.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
文摘BACKGROUND The optimal surgical approach for patients with primary glenohumeral osteoarthritis(GHOA)and an intact rotator cuff remains debated.While anatomic total shoulder arthroplasty(TSA)has traditionally been favoured,reverse TSA(RTSA)is increasingly utilized.AIM To systematically compare the outcomes of RTSA and TSA in this specific patient population.METHODS A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines.Retrospective comparative studies evaluating RTSA and TSA in patients with GHOA and intact rotator cuff were included.Key outcomes assessed included complication and reoperation rates,patient-reported outcome measures(PROMs),and range of motion.Risk of bias was assessed using the Risk of Bias in Non-randomized Studies of Interventions tool.RESULTS Twelve studies encompassing 1608 patients(580 RTSA,1028 TSA)met inclusion criteria.RTSA was associated with a lower reoperation rate compared to TSA[odds ratio=0.37;95%confidence interval(CI):0.14-0.94;P value=0.04],while no significant difference in overall complication rates was observed(odds ratio=0.47;95%CI:0.19-1.16;P value=0.10).RTSA patients showed superior outcomes in University of California Los Angeles,Simple Shoulder Test,and Shoulder Pain and Disability Index scores;however,the differences did not exceed the minimal clinically important difference.TSA patients had significantly better external rotation(mean difference=-9.0°;95%CI:-13.21 to-5.02;P value<0.0001).No significant differences were found in other range of motion measures or satisfaction scores.The overall methodological quality of included studies was moderate to serious.CONCLUSION In patients with GHOA and an intact rotator cuff,RTSA may offer comparable or improved outcomes to TSA with lower reoperation rates and similar complication profiles.Functional outcomes favour RTSA in certain patientreported outcome measures,while TSA retains an advantage in external rotation.Surgical decision-making should remain individualized based on patient characteristics and functional demands.
基金This work was supported by grants from the National Health and Medical Research Council of Australia,Australia Research Council,and Cancer Council of Victoria,Australia.S.B.is a recipient of an Australian Postgraduate Award.
文摘Estrogen is implicated as playing an important role in aging and tumorigenesis of estrogen responsive tissues;however the mechanisms underlying the mitogenic actions of estrogen are not fully understood.Here we report that estrogen deficiency in mice caused by targeted disruption of the aromatase gene results in a signi-ficant inhibition of telomerase maintenance of telomeres in mouse ovaries in a tissue-specific manner.The inhibition entails a significant shortening of telomeres and compromised proliferation in the follicular granulosa cell compartment of ovary.Gene expression analysis showed decreased levels of proto-oncogene c-Myc and the telomerase catalytic subunit,telomerase reverse transcriptase(TERT),in response to estrogen deficiency.Estrogen replacement therapy led to increases in TERT gene expression,telomerase activity,telomere length and ovarian tissue growth,thereby reinstating ovary development to normal in four weeks.Our data demonstrate for the first time that telomere maintenance is the primary mechanism mediating the mitogenic effect of estrogen on ovarian granulosa cell proliferation by upregulating the genes of c-Myc and TERT in vivo.Estrogen deficiency or over-activity may cause ovarian tissue aging or tumorigenesis,respectively,through estrogen regulation of telomere remodeling.
基金National Natural Science Foundation of China (Nos. 51573123, 51722305, and 51633005)the Ministry of Science and Technology of China (No. 2016YFA0201200) 111 projectPriority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Co-delivery of anti-inflammatory siRNA and hydrophilic drug provides a promising approach for the treatment of ulcerative colitis (UC). However, lack of a suitable and efficient co-delivery carrier poses critical challenge against their utilization. We herein developed macrophage-targeting, reversibly crossli nked polymersomes (TKPR-RCP) based on the TKPR-modified, poly(ethyle ne glycol)-b-poly(trimethylene carbonate-codithiolane trimethylene carbonate)-b-polyethylenimine (PEG-P(TMC-DTC)-PEI) triblock copolymer, which could efficiently encapsulate TNF-α siRNA and dexamethasone sodium phosphate (DSP) in their hydrophilic core. The cationic PEI segments provided additional electrostatic interactions with cargo molecules to promote the encapsulatiion, and disulfide crosslinking of the polymersome membrane endowed the TKPR-RCP with high colloidal stability. Because the cationic PEI was embedded in the hydrophilic core, the polymersomes displayed neutral surface charge and thus possessed high serum stability. The TKPR-RCP co-encapsulating TNF-α siRNA and DSP could be efficiently internalized by macrophages (~98%) and undergo redox-responsive membrane de-crosslinking to accelerate cargo release in the cytoplasm, thus inducing efficient gene silencing and anti-inflammatory effect .Intravenous injectio n of the co-delivery TKPR-RCP mediated pote nt and cooperative anti-inflammatory effect in inflamed colons of UC mice, and significantly prevented animals from colonic injury. This study therefore provides a promising approach for the co-delivery of hydrophilic drug/siRNA toward the treatment of inflammatory bowel diseases.
基金The reported study was supported in part by research grants from the 2019 Chongqing Support Program for Entrepreneurship and Innovation(No.cx2019113)(JF)the 2019 Science and Technology Research Plan Project of Chongqing Education Commission(KJQN201900410)(JF)+9 种基金the 2019 Youth Innovative Talent Training Program of Chongqing Education Commission(No.CY200409)(JF)the 2019 Funding for Postdoctoral Research(Chongqing Human Resources and Social Security Bureau No.298)(JF)and the National Key Research and Development Program of China(2016YFC1000803)RRR,TCH and GAA were partially funded by the National Institutes of Health(DE030480)WW was supported by the Medical Scientist Training Program of the National Institutes of Health(T32 GM007281)This project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430TCH was also supported by the Mabel Green Myers Research Endowment Fund,The University of Chicago Orthopaedics Alumni Fund,and The University of Chicago SHOCK Fund.Funding sources were not involved in the study designin the collection,analysis and/or interpretation of datain the writing of the reportor in the decision to submit the paper for publication.
文摘Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization.Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation.Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing,effective management of large chronic skin wounds remains a clinical challenge.Keratinocytes are critical to re-epithelialization and wound healing.Here,we investigated whether exogenous keratinocytes,in combination with a citrate-based scaffold,enhanced skin wound healing.We first established reversibly immortalized mouse keratinocytes(iKera),and confirmed that the iKera cells expressed keratinocyte markers,and were responsive to UVB treatment,and were non-tumorigenic.In a proof-of-principle experiment,we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone,in a mouse skin wound model.Thus,these results demonstrate that iKera cells may serve as a valuable skin epithelial source when,combining with appropriate biocompatible scaffolds,to investigate cutaneous wound healing and skin regeneration.
基金supported by the National Natural Science Foundation of China(Nos.82172076,52273144,and 52033006)111 project,Collaborative Innovation Center of Suzhou Nano Science&Technology,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices,and Suzhou Key Laboratory of Nanotechnology and Biomedicine.
文摘MicroRNA-208a(miR-208a)plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion(IR)injury.MiR-208a inhibitor(mI)with complementary RNA sequence can silence the expression of miR-208a,while it is challenging to achieve efficient and myocardium-targeted delivery.Herein,biomimetic nanocomplexes(NCs)reversibly coated with red blood cell membrane(RM)were developed for the myocardial delivery of mI.To construct the NCs,membrane-penetrating helical polypeptide(PG)was first adopted to condense mI and form the cationic inner core,which subsequently adsorbed catalase(CAT)via electrostatic interaction followed by surface coating with RM.The membrane-coated NCs enabled prolonged blood circulation after systemic administration,and could accumulate in the injured myocardium via passive targeting.In the oxidative microenvironment of injured myocardium,CAT decomposed H_(2)O_(2)to produce O_(2)bubbles,which drove the shedding of the outer RM to expose the positively charged inner core,thus facilitated effective internalization by cardiac cells.Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress,NCs effectively ameliorated the myocardial microenvironment,hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions.This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium,and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.
基金supported by National Natural Science Foundation of China(No.22278308 and 22109114)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant number:JDSX2022023).
文摘Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金Project supported by the National Key Research and Development Program of China(2021YFB3502803)The"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)+3 种基金Science and Technology Program of Zhejiang Province(2024C01145)The Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Obtaining high magnetic properties in high Ce-content magnets is essential to expand the widespread application of low-cost magnets.In this study,high Ce-content magnets with up to 45%Ce substitution for Nd were prepared by combining the single/dual/multi-main-phase processes with the Dy-containing grain boundary diffusion process(GBDP).The effects of base magnets with different Ce distributions on GBDP were systematically investigated.Magnetic properties and micro structure analysis reveal that high-performance multi-main-phase(MMP)diffused magnets with remanence(Br)up to 12.52 kGs,coercivity up to 16.08 kOe,and maximum magnetic energy product up to 36.44 MGOe are obtained,which is attributed to the regulation of Ce by the MMP process,and the optimization of microstructure by Gd-Cu alloy.Meanwhile,the diffusion efficiency is significantly improved because of Ce being restricted to the grain core,which promotes the formation of a continuous structure at the grain boundaries,and the formation of a continuous multilayer shell grain structure with high anisotropy field,while the Br of the diffused magnet is maintained.Besides,magnetic domain analysis shows that the MMP diffused magnet effectively suppresses the nucleation of demagnetized domains and enhances the pinning effect of domain walls.The study establishes an experimental foundation for the development of sintered high Ce-content magnets showcasing superior performance.