With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multi...With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.展开更多
Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of...Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of only two regions:the focal and nonfocal regions.The focal region mainly contains information for diagnosis,while the nonfocal region serves as the monochrome background.The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images,and manual segmentation is time-consuming,poorly reproducible,and operator-dependent.Implementing state-of-the-art deep learning(DL)models will facilitate key benefits,but the lack of domain-specific labels for existing medical datasets makes it impossible.To address this problem,this study provides labels of existing medical datasets based on a hybrid segmentation approach to facilitate the implementation of DL segmentation models in this domain.First,an initial segmentation based on a 33 kernel is performed to analyze×identified contour pixels before classifying pixels into focal and nonfocal regions.Then,several human expert raters evaluate and classify the generated labels into accurate and inaccurate labels.The inaccurate labels undergo manual segmentation by medical practitioners and are scored based on a hierarchical voting scheme before being assigned to the proposed dataset.To ensure reliability and integrity in the proposed dataset,we evaluate the accurate automated labels with manually segmented labels by medical practitioners using five assessment metrics:dice coefficient,Jaccard index,precision,recall,and accuracy.The experimental results show labels in the proposed dataset are consistent with the subjective judgment of human experts,with an average accuracy score of 94%and dice coefficient scores between 90%-99%.The study further proposes a ResNet-UNet with concatenated spatial and channel squeeze and excitation(scSE)architecture for semantic segmentation to validate and illustrate the usefulness of the proposed dataset.The results demonstrate the superior performance of the proposed architecture in accurately separating the focal and nonfocal regions compared to state-of-the-art architectures.Dataset information is released under the following URL:https://www.kaggle.com/lordamoah/datasets(accessed on 31 March 2025).展开更多
With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed...With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.展开更多
Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement...Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement)algorithm is proposed as an automatic contrast enhancement(CE)method for medical images based on region ofinterest(ROI)and non-region of interest(NROI).The PRDHMCE algorithm strategically enhances the ROI aftersegmentation using histogram stretching and data embedding.An initial histogram evaluation compares histogrambins with their neighbours to select the bin with the maximum pixel count.The selected bin is set as the point forcontrast stretching with enhancement and secret data embedding in the ROI.The remaining data is embedded inthe NROIwhile reducing image distortions.Experimentalresultsshowthe effectiveness of PRDHMCE in optimallyimproving image contrast and increasing embedding capacity comparedwith existing methods based on qualitativeand objective metricssuch as peak signal-to-noise ratio(PSNR),structuralsimilarity index(SSIM),relative contrasterror(RCE),relative mean brightness error(RMBE)and mean opinion score(MOS).Additionally,PRDHMCErecovers medical images fully without data loss.展开更多
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou...Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels.展开更多
A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided ...A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed.展开更多
Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on blo...Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.展开更多
Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encr...Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity.展开更多
With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding perf...With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding performance and the block size.Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed data;the smaller the pixel blocks,greater is the embedding capacity.However,it tends to result in the deterioration of the quality of the marked image.Herein,a novel reversible data hiding method is proposed by incorporating a block merging strategy into Li et al.’s pixel-value-ordering method,which realizes the dynamic control of block size by considering the image texture.First,the cover image is divided into non-overlapping 2×2 pixel blocks.Subsequently,according to their complexity,similarity and thresholds,these blocks are employed for data embedding through the pixel-value-ordering method directly or after being emerged into 2×4,4×2,or 4×4 sized blocks.Hence,smaller blocks can be used in the smooth region to create a high embedding capacity and larger blocks in the texture region to maintain a high peak signal-to-noise ratio.Experimental results prove that the proposed method is superior to the other three advanced methods.It achieves a high embedding capacity while maintaining low distortion and improves the embedding performance of the pixel-value-ordering algorithm.展开更多
To measure the security for hot searched reversible data hiding(RDH)technique,especially for the common-used histogram-shifting based RDH(denoted as HS-RDH),several steganalysis schemes are designed to detect whether ...To measure the security for hot searched reversible data hiding(RDH)technique,especially for the common-used histogram-shifting based RDH(denoted as HS-RDH),several steganalysis schemes are designed to detect whether some secret data has been hidden in a normal-looking image.However,conventional steganalysis schemes focused on the previous RDH algorithms,i.e.,some early spatial/pixel domain-based histogram-shifting(HS)schemes,which might cause great changes in statistical characteristics and thus be easy to be detected.For recent improved methods,such as some adaptive prediction error(PE)based embedding schemes,those conventional schemes might be invalid,since those adaptive embedding mechanism would effectively reduce the embedding trace and thus increase the difficulty of steganalysis.Therefore,a novel steganalysis method is proposed in this paper to detect recent adaptive RDH schemes and provide a more effective detection tool for RDH.The contributions of this paper could be summarized as follows.(1)By analyzing the characteristics for those adaptive HS-RDH,an effective“flat ground”based detection method is designed to fast identify whether the given image is used to hide secret data;(2)According to the empirical statistical model,double check mechanism is provided to improve the detection accuracy;(3)In addition,to further improve detection ability,some detailed information for secret data,i.e.,its content and embedding location are further estimated.Compared with conventional steganalysis methods,experimental results indicate that our proposed algorithm could achieve a better detection accuracy and meanwhile acquire more detailed information on secret data.展开更多
This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts,...This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts, which are to be encrypted by applying the homomorphic application based on the Paillier algorithm. Then a serial of operations are carried out in the encrypted domain so as to embed the additional data into the encrypted image. Finally, the embedded additional data can be perfectly extracted, and the host image can be recovered without error when the marked image is decrypted directly. Security analysis, extensive experiment results and comparisons illustrate that it has high security, and the original image recovery is free of any error. Meanwhile, the embedding capacity of this algorithm is enhanced when compared with other literatures.展开更多
Reversible data hiding in encrypted image(RDHEI)is a widely used technique for privacy protection,which has been developed in many applications that require high confidentiality,authentication and integrity.Proposed R...Reversible data hiding in encrypted image(RDHEI)is a widely used technique for privacy protection,which has been developed in many applications that require high confidentiality,authentication and integrity.Proposed RDHEI methods do not allow high embedding rate while ensuring losslessly recover the original image.Moreover,the ciphertext form of encrypted image in RDHEI framework is easy to cause the attention of attackers.This paper proposes a reversible data hiding algorithm based on image camouflage encryption and bit plane compression.A camouflage encryption algorithm is used to transform a secret image into another meaningful target image,which can cover both secret image and encryption behavior based on“plaintext to plaintext”transformation.An edge optimization method based on prediction algorithm is designed to improve the image camouflage encryption quality.The reversible data hiding based bit-plane level compression,which can improve the redundancy of the bit plane by Gray coding,is used to embed watermark in the camouflage image.The experimental results also show the superior performance of the method in terms of embedding capacity and image quality.展开更多
This paper proposes a two-step general framework for reversible data hiding(RDH)schemes with controllable contrast enhancement.The first step aims at preserving visual perception as much as possible on the basis of ac...This paper proposes a two-step general framework for reversible data hiding(RDH)schemes with controllable contrast enhancement.The first step aims at preserving visual perception as much as possible on the basis of achieving high embedding capacity(EC),while the second step is used for increasing image contrast.In the second step,some peak-pairs are utilized so that the histogram of pixel values is modified to perform histogram equalization(HE),which would lead to the image contrast enhancement.However,for HE,the utilization of some peak-pairs easily leads to over-enhanced image contrast when a large number of bits are embedded.Therefore,in our proposed framework,contrast over-enhancement is avoided by controlling the degree of contrast enhancement.Since the second step can only provide a small amount of data due to controlled contrast enhancement,the first one helps to achieve a large amount of data without degrading visual quality.Any RDH method which can achieve high EC while preserve good visual quality,can be selected for the first step.In fact,Gao et al.’s method is a special case of our proposed framework.In addition,two simple and commonly-used RDH methods are also introduced to further demonstrate the generalization of our framework.展开更多
This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for em...This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for embedding data into H.264/AVC video sequences.In order to guarantee the reversibility of the proposed scheme,the last nonzero quantized discrete cosine transform(DCT)coefficients in embeddable 4×4 blocks are shifted by the technology of histogram modification.The proposed scheme is realized after quantization and before entropy coding of H.264/AVC compression standard.Therefore,the embedded information can be correctly extracted at the decoding side.Peak-signal-noise-to-ratio(PSNR)and Structure similarity index(SSIM),embedding payload and bit-rate variation are exploited to measure the performance of the proposed scheme.Experimental results have shown that the proposed scheme leads to less SSIM variation and bit-rate increase.展开更多
To improve the security and quality of decrypted images,this work proposes a reversible data hiding in encrypted image based on iterative recovery.The encrypted image is firstly generated by the pixel classification s...To improve the security and quality of decrypted images,this work proposes a reversible data hiding in encrypted image based on iterative recovery.The encrypted image is firstly generated by the pixel classification scrambling and bit-wise exclusive-OR(XOR),which improves the security of encrypted images.And then,a pixel-typemark generation method based on block-compression is designed to reduce the extra burden of key management and transfer.At last,an iterative recovery strategy is proposed to optimize the marked decrypted image,which allows the original image to be obtained only using the encryption key.The proposed reversible data hiding scheme in encrypted image is not vulnerable to the ciphertext-only attack due to the fact that the XOR-encrypted pixels are scrambled in the corresponding encrypted image.Experimental results demonstrate that the decrypted images obtained by the proposed method are the same as the original ones,and the maximum embedding rate of proposed method is higher than the previously reported reversible data hiding methods in encrypted image.展开更多
Recently,reversible data hiding in encrypted images(RDHEI)based on pixel prediction has been a hot topic.However,existing schemes still employ a pixel predictor that ignores pixel changes in the diagonal direction dur...Recently,reversible data hiding in encrypted images(RDHEI)based on pixel prediction has been a hot topic.However,existing schemes still employ a pixel predictor that ignores pixel changes in the diagonal direction during prediction,and the pixel labeling scheme is inflexible.To solve these problems,this paper proposes reversible data hiding in encrypted images based on adaptive prediction and labeling.First,we design an adaptive gradient prediction(AGP),which uses eight adjacent pixels and combines four scanning methods(i.e.,horizontal,vertical,diagonal,and diagonal)for prediction.AGP can adaptively adjust the weight of the linear prediction model according to the weight of the edge attribute of the pixel,which improves the prediction ability of the predictor for complex images.At the same time,we adopt an adaptive huffman coding labeling scheme,which can adaptively generate huffman codes for labeling according to different images,effectively improving the scheme’s embedding performance on the dataset.The experimental results show that the algorithm has a higher embedding rate.The embedding rate on the test image Jetplane is 4.2102 bpp,and the average embedding rate on the image dataset Bossbase is 3.8625 bpp.展开更多
Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recurs...Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.展开更多
Dual-image reversible data hiding(RDH)is a technique for hiding important messages.This technology can be used to safely deliver secret mes-sages to the recipient through dual images in an open network without being e...Dual-image reversible data hiding(RDH)is a technique for hiding important messages.This technology can be used to safely deliver secret mes-sages to the recipient through dual images in an open network without being easily noticed.The recipient of the image must receive the two stego-images before the secret message can be completely retrieved.Imperceptibility is one of the main advantages of data hiding technology;to increase the imperceptibility,the quality requirements of the stego-images are relatively important.A dual ste-ganographic image RDH method,called a DS-CF scheme that can achieve a bet-ter steganographic image quality using the center folding(CF)strategy.In this paper,we developed a translocation and switching strategy(TaS)to shorten the distances between the stego-pixel coordinates and the cover pixel coordinates after information being hidden.Compared with the DS-CF scheme,our proposed DS-TaS scheme can effectively improve the quality of the steganographic images at the same level of embedding capability.The experimental results show that the PSNR of our DS-TaS scheme at k=1 was 55.66 dB,which is an increase of 1.5 dB,and is 51.43 dB for k=2,46.66 dB for k=3,and 40.91 dB for k=4.In addition,the PSNR values of the stego images was increased by 1.5,0.29,0.29,and 0.19 dB,respectively.This shows that our proposed dual-image RDH method can optimize the visual quality of the stego-images and is better than many other dual-image RDH techniques.展开更多
Until now,some reversible data hiding in encrypted images(RDH-EI)schemes based on secret sharing(SIS-RDHEI)still have the problems of not realizing diffusivity and high embedding capacity.Therefore,this paper innovati...Until now,some reversible data hiding in encrypted images(RDH-EI)schemes based on secret sharing(SIS-RDHEI)still have the problems of not realizing diffusivity and high embedding capacity.Therefore,this paper innovatively proposes a high capacity RDH-EI scheme that combines adaptive most significant bit(MSB)prediction with secret sharing technology.Firstly,adaptive MSB prediction is performed on the original image and cryptographic feedback secret sharing strategy encrypts the spliced pixels to spare embedding space.In the data hiding phase,each encrypted image is sent to a data hider to embed the secret information independently.When r copies of the image carrying the secret text are collected,the original image can be recovered lossless and the secret information can be extracted.Performance evaluation shows that the proposed method in this paper has the diffusivity,reversibility,and separability.The last but the most important,it has higher embedding capacity.For 512×512 grayscale images,the average embedding rate reaches 4.7358 bits per pixel(bpp).Compared to the average embedding rate that can be achieved by the Wang et al.’s SIS-RDHEI scheme,the proposed scheme with(2,2),(2,3),(2,4),(3,4),and(3,5)-threshold can increase by 0.7358 bpp,2.0658 bpp,2.7358 bpp,0.7358 bpp,and 1.5358 bpp,respectively.展开更多
Reversible data hiding(RDH)is a method to embed messages into an image that human eyes are difficult to recognize the differences between the original image and the embedded image.The method needs to make sure that th...Reversible data hiding(RDH)is a method to embed messages into an image that human eyes are difficult to recognize the differences between the original image and the embedded image.The method needs to make sure that the original image and the embedded information can be exactly recovered.The prediction-error expansion(PEE)is a successful way to realize RDH.However,it is fixed when pairing the conventional twodimensional prediction-error histogram(2D-PEH).So,the embedding capacity(EC)and embedding distortion(ED)are not satisfactory.In this study,we propose a method called greedy pairing prediction-error expansion(GPPEE)based on pairwise RDH and demonstrate GPPEE can achieve a more efficient embedding goal and reduce ED.展开更多
基金funded by theNational Science and Technology Council of Taiwan under the grant number NSTC 113-2221-E-035-058.
文摘With the rapid expansion of multimedia data,protecting digital information has become increasingly critical.Reversible data hiding offers an effective solution by allowing sensitive information to be embedded in multimedia files while enabling full recovery of the original data after extraction.Audio,as a vital medium in communication,entertainment,and information sharing,demands the same level of security as images.However,embedding data in encrypted audio poses unique challenges due to the trade-offs between security,data integrity,and embedding capacity.This paper presents a novel interpolation-based reversible data hiding algorithm for encrypted audio that achieves scalable embedding capacity.By increasing sample density through interpolation,embedding opportunities are significantly enhanced while maintaining encryption throughout the process.The method further integrates multiple most significant bit(multi-MSB)prediction and Huffman coding to optimize compression and embedding efficiency.Experimental results on standard audio datasets demonstrate the proposed algorithm’s ability to embed up to 12.47 bits per sample with over 9.26 bits per sample available for pure embedding capacity,while preserving full reversibility.These results confirm the method’s suitability for secure applications that demand high embedding capacity and perfect reconstruction of original audio.This work advances reversible data hiding in encrypted audio by offering a secure,efficient,and fully reversible data hiding framework.
基金supported by the National Natural Science Foundation of China(Grant Nos.62072250,61772281,61702235,U1636117,U1804263,62172435,61872203 and 61802212)the Zhongyuan Science and Technology Innovation Leading Talent Project of China(Grant No.214200510019)+3 种基金the Suqian Municipal Science and Technology Plan Project in 2020(S202015)the Plan for Scientific Talent of Henan Province(Grant No.2018JR0018)the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology(Grant No.2020B1212060078)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Fund.
文摘Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of only two regions:the focal and nonfocal regions.The focal region mainly contains information for diagnosis,while the nonfocal region serves as the monochrome background.The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images,and manual segmentation is time-consuming,poorly reproducible,and operator-dependent.Implementing state-of-the-art deep learning(DL)models will facilitate key benefits,but the lack of domain-specific labels for existing medical datasets makes it impossible.To address this problem,this study provides labels of existing medical datasets based on a hybrid segmentation approach to facilitate the implementation of DL segmentation models in this domain.First,an initial segmentation based on a 33 kernel is performed to analyze×identified contour pixels before classifying pixels into focal and nonfocal regions.Then,several human expert raters evaluate and classify the generated labels into accurate and inaccurate labels.The inaccurate labels undergo manual segmentation by medical practitioners and are scored based on a hierarchical voting scheme before being assigned to the proposed dataset.To ensure reliability and integrity in the proposed dataset,we evaluate the accurate automated labels with manually segmented labels by medical practitioners using five assessment metrics:dice coefficient,Jaccard index,precision,recall,and accuracy.The experimental results show labels in the proposed dataset are consistent with the subjective judgment of human experts,with an average accuracy score of 94%and dice coefficient scores between 90%-99%.The study further proposes a ResNet-UNet with concatenated spatial and channel squeeze and excitation(scSE)architecture for semantic segmentation to validate and illustrate the usefulness of the proposed dataset.The results demonstrate the superior performance of the proposed architecture in accurately separating the focal and nonfocal regions compared to state-of-the-art architectures.Dataset information is released under the following URL:https://www.kaggle.com/lordamoah/datasets(accessed on 31 March 2025).
基金the National Natural Science Foundation of China(Grant Numbers 622724786210245062102451).
文摘With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.
基金supported in part by the National Natural Science Foundation of China under Grant No.61662039in part by the Jiangxi Key Natural Science Foundation under No.20192ACBL20031+1 种基金in part by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(NUIST)under Grant No.2019r070in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Fund.
文摘Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement)algorithm is proposed as an automatic contrast enhancement(CE)method for medical images based on region ofinterest(ROI)and non-region of interest(NROI).The PRDHMCE algorithm strategically enhances the ROI aftersegmentation using histogram stretching and data embedding.An initial histogram evaluation compares histogrambins with their neighbours to select the bin with the maximum pixel count.The selected bin is set as the point forcontrast stretching with enhancement and secret data embedding in the ROI.The remaining data is embedded inthe NROIwhile reducing image distortions.Experimentalresultsshowthe effectiveness of PRDHMCE in optimallyimproving image contrast and increasing embedding capacity comparedwith existing methods based on qualitativeand objective metricssuch as peak signal-to-noise ratio(PSNR),structuralsimilarity index(SSIM),relative contrasterror(RCE),relative mean brightness error(RMBE)and mean opinion score(MOS).Additionally,PRDHMCErecovers medical images fully without data loss.
基金This work was supported by the National Natural Science Foundation of China(No.61702276)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant 2016r055 and the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The authors are grateful for the anonymous reviewers who made constructive comments and improvements.
文摘Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels.
文摘A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed.
基金This work was supported by the National Natural Science Foundation of China(61672354,61702332).
文摘Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.
基金supported by the National Natural Science Foundation of China(61872303,U1936113)the Science and Technology Innovation Talents Program of Sichuan Science and Technology Department(2018RZ0143)the Key Project of Sichuan Science and Technology Innovation Pioneering Miaozi Project(19MZGC0163).
文摘Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity.
文摘With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding performance and the block size.Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed data;the smaller the pixel blocks,greater is the embedding capacity.However,it tends to result in the deterioration of the quality of the marked image.Herein,a novel reversible data hiding method is proposed by incorporating a block merging strategy into Li et al.’s pixel-value-ordering method,which realizes the dynamic control of block size by considering the image texture.First,the cover image is divided into non-overlapping 2×2 pixel blocks.Subsequently,according to their complexity,similarity and thresholds,these blocks are employed for data embedding through the pixel-value-ordering method directly or after being emerged into 2×4,4×2,or 4×4 sized blocks.Hence,smaller blocks can be used in the smooth region to create a high embedding capacity and larger blocks in the texture region to maintain a high peak signal-to-noise ratio.Experimental results prove that the proposed method is superior to the other three advanced methods.It achieves a high embedding capacity while maintaining low distortion and improves the embedding performance of the pixel-value-ordering algorithm.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61762054,U1736215,61772573 and 61563022in part by the National Science Foundation for Distinguished Young Scholars of Jiangxi Province under Grant 20171BCB23072Many thanks to the anonymous reviewers for their insightful comments and valuable suggestions,which helped a lot to improve the paper quality.
文摘To measure the security for hot searched reversible data hiding(RDH)technique,especially for the common-used histogram-shifting based RDH(denoted as HS-RDH),several steganalysis schemes are designed to detect whether some secret data has been hidden in a normal-looking image.However,conventional steganalysis schemes focused on the previous RDH algorithms,i.e.,some early spatial/pixel domain-based histogram-shifting(HS)schemes,which might cause great changes in statistical characteristics and thus be easy to be detected.For recent improved methods,such as some adaptive prediction error(PE)based embedding schemes,those conventional schemes might be invalid,since those adaptive embedding mechanism would effectively reduce the embedding trace and thus increase the difficulty of steganalysis.Therefore,a novel steganalysis method is proposed in this paper to detect recent adaptive RDH schemes and provide a more effective detection tool for RDH.The contributions of this paper could be summarized as follows.(1)By analyzing the characteristics for those adaptive HS-RDH,an effective“flat ground”based detection method is designed to fast identify whether the given image is used to hide secret data;(2)According to the empirical statistical model,double check mechanism is provided to improve the detection accuracy;(3)In addition,to further improve detection ability,some detailed information for secret data,i.e.,its content and embedding location are further estimated.Compared with conventional steganalysis methods,experimental results indicate that our proposed algorithm could achieve a better detection accuracy and meanwhile acquire more detailed information on secret data.
基金the Research Program of Chongqing Education Commission(KJQN202001438,KJQN202001436)the Team Project Affiliated to Yangtze Normal University(2016XJTD01)。
文摘This paper proposes a novel reversible data hiding scheme for encrypted images with high payload based on homomorphic encryption. In this algorithm, each pixel of the original image is firstly divided into five parts, which are to be encrypted by applying the homomorphic application based on the Paillier algorithm. Then a serial of operations are carried out in the encrypted domain so as to embed the additional data into the encrypted image. Finally, the embedded additional data can be perfectly extracted, and the host image can be recovered without error when the marked image is decrypted directly. Security analysis, extensive experiment results and comparisons illustrate that it has high security, and the original image recovery is free of any error. Meanwhile, the embedding capacity of this algorithm is enhanced when compared with other literatures.
基金supported in part by the National Key R&D Program of China(2019YFB1406504)the National Natural Science Foundation of China(U1836108,U1936216,62002197).
文摘Reversible data hiding in encrypted image(RDHEI)is a widely used technique for privacy protection,which has been developed in many applications that require high confidentiality,authentication and integrity.Proposed RDHEI methods do not allow high embedding rate while ensuring losslessly recover the original image.Moreover,the ciphertext form of encrypted image in RDHEI framework is easy to cause the attention of attackers.This paper proposes a reversible data hiding algorithm based on image camouflage encryption and bit plane compression.A camouflage encryption algorithm is used to transform a secret image into another meaningful target image,which can cover both secret image and encryption behavior based on“plaintext to plaintext”transformation.An edge optimization method based on prediction algorithm is designed to improve the image camouflage encryption quality.The reversible data hiding based bit-plane level compression,which can improve the redundancy of the bit plane by Gray coding,is used to embed watermark in the camouflage image.The experimental results also show the superior performance of the method in terms of embedding capacity and image quality.
基金This work was supported in part by National NSF of China(Nos.61872095,61872128,61571139 and 61201393)New Star of Pearl River on Science and Technology of Guangzhou(No.2014J2200085)+2 种基金the Open Project Program of Shenzhen Key Laboratory of Media Security(Grant No.ML-2018-03)the Opening Project of Guang Dong Province Key Laboratory of Information Security Technology(Grant No.2017B030314131-15)Natural Science Foundation of Xizang(No.2016ZR-MZ-01).
文摘This paper proposes a two-step general framework for reversible data hiding(RDH)schemes with controllable contrast enhancement.The first step aims at preserving visual perception as much as possible on the basis of achieving high embedding capacity(EC),while the second step is used for increasing image contrast.In the second step,some peak-pairs are utilized so that the histogram of pixel values is modified to perform histogram equalization(HE),which would lead to the image contrast enhancement.However,for HE,the utilization of some peak-pairs easily leads to over-enhanced image contrast when a large number of bits are embedded.Therefore,in our proposed framework,contrast over-enhancement is avoided by controlling the degree of contrast enhancement.Since the second step can only provide a small amount of data due to controlled contrast enhancement,the first one helps to achieve a large amount of data without degrading visual quality.Any RDH method which can achieve high EC while preserve good visual quality,can be selected for the first step.In fact,Gao et al.’s method is a special case of our proposed framework.In addition,two simple and commonly-used RDH methods are also introduced to further demonstrate the generalization of our framework.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under the grant No.61972269the Fundamental Research Funds for the Central Universities under the grant No.YJ201881Doctoral Innovation Fund Program of Southwest Jiaotong University under the grant No.DCX201824.
文摘This paper presents a reversible data hiding(RDH)method,which is designed by combining histogram modification(HM)with run-level coding in H.264/advanced video coding(AVC).In this scheme,the run-level is changed for embedding data into H.264/AVC video sequences.In order to guarantee the reversibility of the proposed scheme,the last nonzero quantized discrete cosine transform(DCT)coefficients in embeddable 4×4 blocks are shifted by the technology of histogram modification.The proposed scheme is realized after quantization and before entropy coding of H.264/AVC compression standard.Therefore,the embedded information can be correctly extracted at the decoding side.Peak-signal-noise-to-ratio(PSNR)and Structure similarity index(SSIM),embedding payload and bit-rate variation are exploited to measure the performance of the proposed scheme.Experimental results have shown that the proposed scheme leads to less SSIM variation and bit-rate increase.
基金The research is supported by the National Natural Science Foundation of China(61461047,U1536110).
文摘To improve the security and quality of decrypted images,this work proposes a reversible data hiding in encrypted image based on iterative recovery.The encrypted image is firstly generated by the pixel classification scrambling and bit-wise exclusive-OR(XOR),which improves the security of encrypted images.And then,a pixel-typemark generation method based on block-compression is designed to reduce the extra burden of key management and transfer.At last,an iterative recovery strategy is proposed to optimize the marked decrypted image,which allows the original image to be obtained only using the encryption key.The proposed reversible data hiding scheme in encrypted image is not vulnerable to the ciphertext-only attack due to the fact that the XOR-encrypted pixels are scrambled in the corresponding encrypted image.Experimental results demonstrate that the decrypted images obtained by the proposed method are the same as the original ones,and the maximum embedding rate of proposed method is higher than the previously reported reversible data hiding methods in encrypted image.
基金This work was supported in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant(No.ZJWKT202204),author J.Q,http://zfsg.gd.gov.cn/xxfb/ywsd/index.html.
文摘Recently,reversible data hiding in encrypted images(RDHEI)based on pixel prediction has been a hot topic.However,existing schemes still employ a pixel predictor that ignores pixel changes in the diagonal direction during prediction,and the pixel labeling scheme is inflexible.To solve these problems,this paper proposes reversible data hiding in encrypted images based on adaptive prediction and labeling.First,we design an adaptive gradient prediction(AGP),which uses eight adjacent pixels and combines four scanning methods(i.e.,horizontal,vertical,diagonal,and diagonal)for prediction.AGP can adaptively adjust the weight of the linear prediction model according to the weight of the edge attribute of the pixel,which improves the prediction ability of the predictor for complex images.At the same time,we adopt an adaptive huffman coding labeling scheme,which can adaptively generate huffman codes for labeling according to different images,effectively improving the scheme’s embedding performance on the dataset.The experimental results show that the algorithm has a higher embedding rate.The embedding rate on the test image Jetplane is 4.2102 bpp,and the average embedding rate on the image dataset Bossbase is 3.8625 bpp.
文摘Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.
文摘Dual-image reversible data hiding(RDH)is a technique for hiding important messages.This technology can be used to safely deliver secret mes-sages to the recipient through dual images in an open network without being easily noticed.The recipient of the image must receive the two stego-images before the secret message can be completely retrieved.Imperceptibility is one of the main advantages of data hiding technology;to increase the imperceptibility,the quality requirements of the stego-images are relatively important.A dual ste-ganographic image RDH method,called a DS-CF scheme that can achieve a bet-ter steganographic image quality using the center folding(CF)strategy.In this paper,we developed a translocation and switching strategy(TaS)to shorten the distances between the stego-pixel coordinates and the cover pixel coordinates after information being hidden.Compared with the DS-CF scheme,our proposed DS-TaS scheme can effectively improve the quality of the steganographic images at the same level of embedding capability.The experimental results show that the PSNR of our DS-TaS scheme at k=1 was 55.66 dB,which is an increase of 1.5 dB,and is 51.43 dB for k=2,46.66 dB for k=3,and 40.91 dB for k=4.In addition,the PSNR values of the stego images was increased by 1.5,0.29,0.29,and 0.19 dB,respectively.This shows that our proposed dual-image RDH method can optimize the visual quality of the stego-images and is better than many other dual-image RDH techniques.
基金supported by the National Natural Science Foundation of China(Nos.62272478 and 61872384)National Natural Science Foundation Youth Foundation Project(Nos.62102451 and 62102450)Basic Frontier Research Foundation Project of Armed Police Engineering University(Nos.WJY202012 and WJY202112).
文摘Until now,some reversible data hiding in encrypted images(RDH-EI)schemes based on secret sharing(SIS-RDHEI)still have the problems of not realizing diffusivity and high embedding capacity.Therefore,this paper innovatively proposes a high capacity RDH-EI scheme that combines adaptive most significant bit(MSB)prediction with secret sharing technology.Firstly,adaptive MSB prediction is performed on the original image and cryptographic feedback secret sharing strategy encrypts the spliced pixels to spare embedding space.In the data hiding phase,each encrypted image is sent to a data hider to embed the secret information independently.When r copies of the image carrying the secret text are collected,the original image can be recovered lossless and the secret information can be extracted.Performance evaluation shows that the proposed method in this paper has the diffusivity,reversibility,and separability.The last but the most important,it has higher embedding capacity.For 512×512 grayscale images,the average embedding rate reaches 4.7358 bits per pixel(bpp).Compared to the average embedding rate that can be achieved by the Wang et al.’s SIS-RDHEI scheme,the proposed scheme with(2,2),(2,3),(2,4),(3,4),and(3,5)-threshold can increase by 0.7358 bpp,2.0658 bpp,2.7358 bpp,0.7358 bpp,and 1.5358 bpp,respectively.
基金supported by MOST under Grants No.107-2221-E-845-002-MY3 and No.110-2221-E-845-002-。
文摘Reversible data hiding(RDH)is a method to embed messages into an image that human eyes are difficult to recognize the differences between the original image and the embedded image.The method needs to make sure that the original image and the embedded information can be exactly recovered.The prediction-error expansion(PEE)is a successful way to realize RDH.However,it is fixed when pairing the conventional twodimensional prediction-error histogram(2D-PEH).So,the embedding capacity(EC)and embedding distortion(ED)are not satisfactory.In this study,we propose a method called greedy pairing prediction-error expansion(GPPEE)based on pairwise RDH and demonstrate GPPEE can achieve a more efficient embedding goal and reduce ED.