期刊文献+
共找到450篇文章
< 1 2 23 >
每页显示 20 50 100
Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring
1
作者 Seunghwan Seo Moonkyung Chung 《Computer Modeling in Engineering & Sciences》 2025年第9期2893-2922,共30页
Excavation-induced deformations of earth-retaining walls(ERWs)can critically affect the safety of surrounding structures,highlighting the need for reliable prediction models to support timely decision-making during co... Excavation-induced deformations of earth-retaining walls(ERWs)can critically affect the safety of surrounding structures,highlighting the need for reliable prediction models to support timely decision-making during construction.This study utilizes traditional statistical ARIMA(Auto-Regressive Integrated Moving Average)and deep learning-based LSTM(Long Short-Term Memory)models to predict earth-retaining walls deformation using inclinometer data from excavation sites and compares the predictive performance of both models.The ARIMA model demonstrates strengths in analyzing linear patterns in time-series data as it progresses over time,whereas LSTM exhibits superior capabilities in capturing complex non-linear patterns and long-term dependencies within the time series data.This research includes preprocessing of measurement data for inclinometer,performance evaluation based on various time series data lengths and input variable conditions,and demonstrates that the LSTM model offers statistically significant improvements in predictive performance over the ARIMA model.In addition,by combining LSTM with attention mechanism,attention-based LSTM(ATLSTM)is proposed to improve the short-and long-term prediction performance and solve the problem of excavation site domain change.This study presents the advantages and disadvantages of major time series analysis models for the stability evaluation of mud walls using geotechnical inclinometer data from excavation sites,and suggests that time series analysis models can be used effectively through comparative experiments. 展开更多
关键词 ATTENTION LSTM earth retaining wall EXCAVATION INCLINOMETER
在线阅读 下载PDF
Leveraging Neural Networks and Explainable AI for Cost-Effective Retaining Wall Design
2
作者 Gebrail Bekdas Yaren Aydin +1 位作者 Celal Cakiroglu Umit Isikdag 《Computer Modeling in Engineering & Sciences》 2025年第5期1763-1787,共25页
Retaining walls are utilized to support the earth and prevent the soil from spreading with natural slope angles where there are differences in the elevation of ground surfaces.As the need for retaining structures incr... Retaining walls are utilized to support the earth and prevent the soil from spreading with natural slope angles where there are differences in the elevation of ground surfaces.As the need for retaining structures increases,the use of retaining walls is increasing.The retaining walls,which increase the stability of levels,are economical and meet existing adverse conditions.A considerable amount of retaining walls is made from steel-reinforced concrete.The construction of reinforced concrete retaining walls can be costly due to its components.For this reason,the optimum cost should be targeted in the design of retaining walls.This study presents an artificial neural network(ANN)model developed to predict the optimum dimensions of a retaining wall using soil properties,material properties,and external loading conditions.The dataset utilized to train the ANN model is generated with the Flower Pollination Algorithm.The target variables in the dataset are the length of the heel(y1),length of the toe(y2),thickness of the stem(top)(y3),thickness of the stem(bottom)(y4),foundation base thickness(y5)and cost(y6)and these are estimated by utilizing an ANN model based on the height of the wall(x1),material unit weight(x2),wall friction angle(x3),surcharge load(x4),concrete cost per m3(x5),steel cost per ton(x6)and the soil class(x7).The model is formulated and trained as a multi-output regression model,as all outputs are numeric and continuous.The training and evaluation of the model results in a high prediction performance(R20.99).In addition,the impacts of different input features on the model>predictions are revealed using the SHapley Additive exPlanations(SHAP)algorithm.The study demonstrates that when trained with a large dataset,ANN models perform very well by predicting the optimal cost with high performance. 展开更多
关键词 retaining wall neural networks optimum design explainable machine learning
在线阅读 下载PDF
Theory and simulation investigations on stability control of gob-side entry retaining with coal pillar-backfill body system
3
作者 Dong Zhang Qiancheng Zhu +8 位作者 Jianbiao Bai Rui Wang Zizheng Zhang Hao Fu Shuaigang Liu Shuai Yan Yonghong Guo Zhijun Tian Wenda Wu 《International Journal of Mining Science and Technology》 2025年第8期1399-1417,共19页
Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(V... Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(VBS)model is established to analyze roof structure stability during panel advancement,introducing a VBS stability criterion.Reducing block B length l and immediate roof damage variable D,and increasing coal pillar widthχ_(c).lowers the GER structure instability risk.Reducing l and the GER width w leads to a CPBB system stability upswing.A UDEC model was established to systematically reveal how the l,backfill body width x_(b),and strength affect the stability and coupling performance of the CPPB system by monitoring the crack damage D_(C).Simulation results indicate that at l=14 m,χ_(b)=2.0 m,watercement ratio 1.5:1,the coal pillar and backfill body have similar D_(C)but maintain stability,resulting in CPPB system coupling degree K,better.A novel GER method supported by the CPBB was implemented on-site.Monitoring results indicated that the coal pillar peak stresses were 19.17 MPa(ahead),16.14 MPa(behind),and the backfill body peak stress was 12.27 MPa(maximum).The floor heave was380 mm,with a 103 mm backfill body rib. 展开更多
关键词 Roof structure stability Gob-side entry retaining Coal pillar-backfill body system Coupled bearing
在线阅读 下载PDF
Nonlinear forced vibration in a subcritical regime of a porous functionally graded pipe conveying fluid with a retaining clip
4
作者 M.GHOLAMI M.EFTEKHARI 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期101-122,共22页
This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcr... This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcritical dynamics.The nonlinear governing equations for the FGM pipe are derived by the extended Hamilton's principle,and subsequently discretized through the application of the Galerkin method.The direct method of multi-scales is then used to solve the derived equations.A thorough analysis of various parameters,including the clip stiffness,the power-law index,the porosity,and the clip location,is conducted to gain a comprehensive understanding of the system's nonlinear dynamics.Through the analysis of the first natural frequency,the study highlights the influence of the flow velocity and the clip stiffness,while the comparisons with metallic pipes emphasize the role of FGM composition.The examination of the forced response curves reveals saddle-node bifurcations and their dependence on parameters such as the detuning parameter and the power-law index,offering valuable insights into the system's nonlinear resonant behavior.Furthermore,the frequency-response curves illustrate the hardening nonlinearities influenced by factors such as the porosity and the clip stiffness,revealing nuanced effects on the system response and resonance characteristics.This comprehensive analysis enhances the understanding of nonlinear behaviors in FGM porous pipes with a retaining clip,providing key insights for practical engineering applications in system design and optimization. 展开更多
关键词 functionally graded material(FGM)pipe conveying fuid retaining clip porosity primary resonance subcritical regime
在线阅读 下载PDF
Control technology of surrounding rock stability based on compensation theory in gob-side entry retaining with composite hard roof
5
作者 MING Can HE Manchao +2 位作者 WANG Jiong LIU Jianning COLI Massimo 《Journal of Mountain Science》 2025年第3期1029-1047,共19页
The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as diff... The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field. 展开更多
关键词 Retained roadway Short cantilever beam Compensation theory Roadway stability control Pressure relief Industrial test
原文传递
Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading 被引量:2
6
作者 Kewei Fan Guangqing Yang +2 位作者 Weilie Zou Zhong Han Yang Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1388-1397,共10页
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t... Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests. 展开更多
关键词 retaining wall Expanded polystyrene(EPS)geofoam Limited surcharge loading Lateral earth pressure Model test Prediction
在线阅读 下载PDF
Protective effect of retaining wall on rock avalanche:A case study of Nayong rock avalanche in China 被引量:1
7
作者 WANG Zhongfu SHI Fengge +3 位作者 HE Siming ZHANG Xusheng WANG Jingying LIU Enlong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1215-1230,共16页
Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partia... Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche. 展开更多
关键词 Rock avalanche Laboratory model test retaining wall PFC^(3D) FLAC^(3D) Impact force
原文传递
Limit state analysis of rigid retaining structures against seismically induced passive failure in heterogeneous soils
8
作者 Jianfeng Zhou Changbing Qin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1095-1105,共11页
Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge... Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios. 展开更多
关键词 retaining wall Passive earth pressure EARTHQUAKES Finite-element limit-analysis methods
在线阅读 下载PDF
Mid-term outcomes of a kinematically designed cruciate retaining total knee arthroplasty
9
作者 Jonathan L Katzman Akram A Habibi +4 位作者 Muhammad A Haider Casey Cardillo Ivan Fernandez-Madrid Morteza Meftah Ran Schwarzkopf 《World Journal of Orthopedics》 2024年第2期118-128,共11页
BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the nativ... BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the native posterior cruciate ligament.Limited research exists that has examined clinical outcomes or patient reported outcome measures(PROMs)of a large cohort of patients undergoing a CR TKA utilizing a kinematically designed implant.It was hypothesized that the studied CR Knee System would demonstrate favorable outcomes and a clinically significant improvement in pain and functional scores.AIM To assess both short-term and mid-term clinical outcomes and PROMs of a novel CR TKA design.METHODS A retrospective,multi-surgeon study identified 255 knees undergoing a TKA utilizing a kinematically designed CR Knee System(JOURNEY™II CR;Smith and Nephew,Inc.,Memphis,TN)at an urban,academic medical institution between March 2015 and July 2021 with a minimum of two-years of clinical follow-up with an orthopedic surgeon.Patient demographics,surgical information,clinical outcomes,and PROMs data were collected via query of electronic medical records.The PROMs collected in the present study included the Knee Injury and Osteoarthritis Outcome Score for Joint Replacement(KOOS JR)and Patient-Reported Outcomes Measurement Information System(PROMIS■)scores.The significance of improvements in mean PROM scores from preoperative scores to scores collected at six months and two-years postoperatively was analyzed using Independent Samples t-tests.RESULTS Of the 255 patients,65.5%were female,43.8%were White,and patients had an average age of 60.6 years.Primary osteoarthritis(96.9%)was the most common primary diagnosis.The mean surgical time was 105.3 minutes and mean length of stay was 2.1 d with most patients discharged home(92.5%).There were 18 emergency department(ED)visits within 90 d of surgery resulting in a 90 d ED visit rate of 7.1%,including a 2.4%orthopedic-related ED visit rate and a 4.7%non-orthopedic-related ED visit rate.There were three(1.2%)hospital readmissions within 90 d postoperatively.With a mean time to latest follow-up of 3.3 years,four patients(1.6%)required revision,two for arthrofibrosis,one for aseptic femoral loosening,and one for peri-prosthetic joint infection.There were significant improvements in KOOS JR,PROMIS Pain Intensity,PROMIS Pain Interference,PROMIS Mobility,and PROMIS Physical Health from preoperative scores to six month and two-year postoperative scores.CONCLUSION The evaluated implant is an effective,novel design offering excellent outcomes and low complication rates.At a mean follow up of 3.3 years,four patients required revisions,three aseptic and one septic,resulting in an overall implant survival rate of 98.4%and an aseptic survival rate of 98.8%.The results of our study demonstrate the utility of this kinematically designed implant in the setting of primary TKA. 展开更多
关键词 Total knee arthroplasty Cruciate retaining Kinematic design SURVIVORSHIP Bearing material Prosthetic design Clinical outcomes Patient-reported outcome measures
暂未订购
Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls
10
作者 Lianhua Ma Min Huang Linfeng Han 《Structural Durability & Health Monitoring》 EI 2024年第6期853-869,共17页
Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil... Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated. 展开更多
关键词 Reinforced earth retaining walls time history dynamic analysis finite element
在线阅读 下载PDF
Analytical and Numerical Study of the Hydro-Mechanical Behavior of a Cantilever Retaining Wall in Upward Seepage Conditions
11
作者 Mbuh Moses Kuma Nsahlai Leonard +4 位作者 Penka Jules Bertrand Kouamou Nguessi Arnaud Tchemou Gilbert Agandeh Elvis Phonchu Claret Abong 《World Journal of Engineering and Technology》 2024年第4期914-937,共24页
Poor design of ground water evacuation mechanisms is often blocked and leads to the rise of ground water behind the wall. As a result, free water behind the wall that is not quickly evacuated, increases the lateral pr... Poor design of ground water evacuation mechanisms is often blocked and leads to the rise of ground water behind the wall. As a result, free water behind the wall that is not quickly evacuated, increases the lateral pressure and thus favors overturning failure. The resolution of the overturning problem in cantilever retaining walls caused by hydro-mechanical interaction was studied. An analytical and numerical method was used to study this type of wall-floor interaction. Then Coulomb’s design criterion against overturning to develop a mathematical model that compute analytical factor of safety against overturning in different water conditions and heel lengths was used. The modeling and simulation of this system in the Cast3m software which took into account a wide variety of floor and wall properties were performed. The numerical factor of safety against rollover was obtained, and the graphs for the factor of safety versus heel length and immersion depth for both methods were plotted. From (0 ≤ Hw ≤ H/3), water effect is not dangerous to wall stability against overturning and from (H/3 Hw ≤ H), water effect is very dangerous to wall stability against overturning. For analytical and numerical methods, the heel can be predimensioned against overturning as: Lc: [0.27H 0.38H], [0.29H 0.43H] for 0 ≤Hw ≤ H/3;[0.33H 0.45H], [0.39H 0.53H] for H/3 Hw ≤ 2H/3;[0.5H 0.6H], [0.50H 0.67H] for 2H/3 Hw≤ H. The numerical method guaranteeing more safety than the analytical method, Cantilever retaining walls can thus be pre-dimensioned considering Clayey-Sand soil in hydro-mechanical conditions. 展开更多
关键词 CANTILEVER retaining Wall OVERTURNING HYDRO-MECHANICAL Soil-Structure Interaction
在线阅读 下载PDF
A general method to calculate passive earth pressure on rigid retaining wall for all displacement modes 被引量:6
12
作者 彭述权 李夕兵 +1 位作者 樊玲 刘爱华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1526-1532,共7页
A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made... A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made that the lateral passive pressure is linear to the corresponding horizontal displacement and the soil behind retaining wall is composed of a set of springs and ideal rigid plasticity body, the general analytical method was proposed to calculate the passive rigid retaining wall pressure based on Coulomb theory. The analytical results show that the resultant forces of the passive earth pressure are equal to those of Coulomb's theory, but the distribution of the passive pressure and the position of the resultant force depend on the passive displacement mode parameter, and the former is a parabolic function of the soil depth. The analytical results are also in good agreement with the experimental ones. 展开更多
关键词 rigid retaining wall displacement mode passive earth pressure parabolic function
在线阅读 下载PDF
Effects of Combined Application of Water Retaining Agents and Organic Materials on Water Holding Characteristics of Yellow Brown Soils in Hilly Areas 被引量:1
13
作者 唐玉邦 虞利俊 +4 位作者 徐磊 罗佳 王东升 范如芹 裴勤 《Agricultural Science & Technology》 CAS 2015年第9期1985-1988,共4页
[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of comple... [Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water. 展开更多
关键词 Water retaining agents Organic materials Soils of hilly areas Water characteristics
在线阅读 下载PDF
Settlement patterns of mountainous half-filled and half-cut widened subgrade with retaining wall 被引量:1
14
作者 FU Yong-guo JIANG Xin +1 位作者 GU Han-yan QIU Yan-jun 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2791-2802,共12页
The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the prac... The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the practical engineering of half-filled and half-cut widened mountainous highway subgrade with external balance weight retaining wall(BWRW), a sophisticated finite element numerical model is established. The evolution law of subgrade settlement is revealed during the whole process of new subgrade filling and BWRW inclination after construction. The settlement component of subgrade is clarified considering whether the existing pavement continues to be used. The results show that the additional settlement caused by the BWRW inclination after construction cannot be ignored in the widening and reconstruction of mountainous highway subgrade. In addition, pursuant to the comprehensive design of subgrade and pavement, the component of subgrade settlement should be determined according to whether the existing pavement continues to be used, while considering the influence of BWRW inclination after construction. When the existing pavement continues to be used, the settlement of the existing subgrade is caused by the new subgrade filling and the BWRW inclination after construction. On the contrary, the settlement is only caused by the BWRW inclination after construction. 展开更多
关键词 Mountain road widening Balance weight retaining wall Subgrade settlement Pavement utilization retaining wall inclination
原文传递
EXPERT SYSTEM AND ITS APPLICATION IN THE SELECTION OF PIT RETAINING STRUCTURES
15
作者 陆培毅 顾晓鲁 吴健生 《Transactions of Tianjin University》 EI CAS 1998年第2期100-102,共3页
This paper describes the development of an expert system(ES) on earth retaining structures for the selection and design.The ES retaining is an interactive menudriven system and consists of two main parts—the selectio... This paper describes the development of an expert system(ES) on earth retaining structures for the selection and design.The ES retaining is an interactive menudriven system and consists of two main parts—the selection part,selectwall and the design part.Selectwall is developed using the knowledge base and it makes a choice of the most appropriate retaining structure.The design part is developed by three independent subprograms which perform detailed design including strength,deformation,stability of the retaining structure.The calculation results are illustrated by plotting the diagram.Using this program,the design procedure of the retaining structure can be performed automatically. 展开更多
关键词 experts system pit retaining structure selection innerforce calculation
在线阅读 下载PDF
Potential Role of Feldspathic Sandstone as a Natural Water Retaining Agent in Mu Us Sandy Land,Northwest China 被引量:52
16
作者 HAN Jichang XIE Jiancang ZHANG Yang 《Chinese Geographical Science》 SCIE CSCD 2012年第5期550-555,共6页
This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the e... This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention. 展开更多
关键词 feldspathic sandstone sandy land soil water retaining agent Mu Us Sandy Land soil saturatd hydraulicconductivity
在线阅读 下载PDF
Superposed disturbance mechanism of sequential overlying strata collapse for gob-side entry retaining and corresponding control strategies 被引量:13
17
作者 HAN Chang-liang ZHANG Nong +2 位作者 RAN Zhi GAO Rui YANG Hou-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2258-2271,共14页
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en... Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions. 展开更多
关键词 sequential roof collapse gob-side entry retaining superposed disturbance key stratum stability control
在线阅读 下载PDF
Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach 被引量:9
18
作者 Asadollah RANJBAR KARKANAKI Navid GANJIAN Farajollah ASKARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期241-255,共15页
Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This res... Given the extensive utilization of cantilever retaining walls in construction and development projects,their optimal design and analysis with proper attention to seismic loads is a typical engineering problem.This research presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method.The algorithm can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism.One of the main features of this algorithm is its ability to determine the critical condition of failure wedges,the minimum safety factor and maximum force acting on the wall,as well as the minimum weight of the wall,simultaneously,by effectively using the multi-objective optimization.The results obtained by the proposed failure mechanisms show that,while using the upper bound limit analysis approach,the active force should be maximized concurrent with optimizing the direction of the plane passing through the back of the heel.The present study also applies the proposed algorithm to determine the critical direction of the earthquake acceleration coefficient.The critical direction of earthquake acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the safety factor for wall stability.The results obtained in this study are in good agreement with those of similar studies carried out based on the limit equilibrium method and finite element analysis.The critical failure mechanisms were determined via optimization with genetic algorithm. 展开更多
关键词 retaining wall upper bound pseudo-static analysis safety factor multi-objective optimization
在线阅读 下载PDF
Safe retaining pressures for pressurized tunnel face using nonlinear failure criterion and reliability theory 被引量:8
19
作者 杨小礼 姚聪 张佳华 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期708-720,共13页
Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stabili... Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum allowable failure probability. The results can provide practical use in the pressurized tunnel engineering. 展开更多
关键词 TUNNEL limit analysis nonlinear failure criterion pore water pressure retaining pressure
在线阅读 下载PDF
Control mechanism and technique of floor heave with reinforcing solid coal side and floor corner in gob-side coal entry retaining 被引量:6
20
作者 Chen Yong Bai Jianbiao +3 位作者 Yan Shuai Xu Ying Wang Xiangyu Ma Shuqi 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期832-836,共5页
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric... Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining. 展开更多
关键词 Gob-side ENTRY retaining ABUTMENT pressure Forms of FLOOR heave Reinforcing sides of solid COAL SIDE Bolt in a FLOOR CORNER
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部