BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)rema...Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)remain unclear.The aim of this study was to investigate the possible mechanisms of PBD through brain imaging and explore the influence of psychotic symptoms on functional alterations in PBD patients.Twenty-nine psychotic and 26 non-psychotic PBD patients,as well as 19 age-and sex-matched healthy controls underwent a restingstate functional MRI scan and the data were analyzed by independent component analysis.The DMN component from the fMRI data was extracted for each participant.Spearman's rank correlation analysis was performed between aberrant connectivity and clinical measurements.The results demonstrated that psychotic PBD was characterized by aberrant DMN connectivity in the anterior cingulate cortex/medial prefrontal cortex,bilateral caudate nucleus,bilateral angular gyri,and left middle temporal gyrus,while non-psychotic PBD was not,suggesting further impairment with the development of psychosis.In summary,we demonstrated unique impairment in DMN functional connectivity in the psychotic PBD group.These specific neuroanatomical abnormalities may shed light on the underlying pathophysiology and presentation of PBD.展开更多
Age-related changes in the brain connectivity of healthy older adults have been widely studied in recent years,with some differences in the obtained results.Most of these studies showed decreases in general functional...Age-related changes in the brain connectivity of healthy older adults have been widely studied in recent years,with some differences in the obtained results.Most of these studies showed decreases in general functional connectivity,but they also found increases in some particular regions and areas.Frequently,these studies compared young individuals with older subjects,but few studies compared different age groups only in older populations.The purpose of this study is to analyze whole-brain functional connectivity in healthy older adult groups and its network characteristics through functional segregation.A total of 114 individuals,48 to 89 years old,were scanned using resting-state functional magnetic resonance imaging in a resting state paradigm and were divided into six different age groups(<60,60–64,65–69,70–74,75–79,≥80 years old).A partial correlation analysis,a pooled correlation analysis and a study of 3-cycle regions with prominent connectivity were conducted.Our results showed progressive diminution in the functional connectivity among different age groups and this was particularly pronounced between 75 and 79 years old.The oldest group(≥80 years old)showed a slight increase in functional connectivity compared to the other groups.This occurred possibly because of compensatory mechanism in brain functioning.This study provides information on the brain functional characteristics of every age group,with more specific information on the functional progressive decline,and supplies methodological tools to study functional connectivity characteristics.Approval for the study was obtained from the ethics committee of the Comision de Bioetica de la Universidad de Barcelona(approval No.PSI2012-38257)on June 5,2012,and from the ethics committee of the Barcelona’s Hospital Clinic(approval No.2009-5306 and 2011-6604)on October 22,2009 and April 7,2011 respectively.展开更多
In light of ever-present partisan division in the US political system, it is critical that researchers gain a better under-standing of potential biological differences that exist between self-professed Democrats and R...In light of ever-present partisan division in the US political system, it is critical that researchers gain a better under-standing of potential biological differences that exist between self-professed Democrats and Republicans. In the current pilot experiment, we examined differences within the human mirror neuron system (hMNS), a network linked to a host of social and emotional abilities, in a small group of self-identified Republicans and Democrats. We found clear differences between these two groups with respect to resting-state brain connectivity within the hMNS. These neural differences were not systematically related to differences in empathy. Our findings are consistent with the idea that other factors, such as one’s preferential type of social connectivity (broad vs. tight), may have driven the reported findings. These data provide novel insights regarding our knowledge of the biological basis of party identification, and suggest specific directions for future research.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to i...Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.展开更多
Background:Childhood maltreatment(CM)is a potential risk factor for some neuropsychiatric disorders in adulthood(e.g.depression and anxiety)and alters trajectories of brain development.Accumulating evidence suggests t...Background:Childhood maltreatment(CM)is a potential risk factor for some neuropsychiatric disorders in adulthood(e.g.depression and anxiety)and alters trajectories of brain development.Accumulating evidence suggests that functional connectivity of the limbic system,especially the amygdala,is highly associated with childhood maltreatment,although not all studies have found this.These inconsistent results may be due to differential alterations of amygdala resting-state functional connectivity(rsFC)following childhood maltreatment.Objective:Our aim was to investigate the relationship between the rsFC of amygdala subregions and CM severity,as well as to develop a stable rsFC-based model for inferring the severity of CM.Methods:In this study,we employed the Childhood Trauma Questionnaire(CTQ)to assess CM severity in each individual.We explored the relationship between the rsFC of amygdala subregions(i.e.centromedial-CMA,basolateral-BLA,superficial-SFA amygdala)and CM experience in a discovery dataset of n=110 healthy Chinese participants by linear multiple regression analysis.Subsequent dimensional and categorical approach were performed to elucidate the relationship between rsFCs and CM severity and CM subtypes,respectively.A support vector regression model was then conducted to validate the associations between rsFCs and total CTQ scores.Moreover,we also verified the model into another independent replication dataset(n=38).Results:Our findings suggested that childhood maltreatment was negatively associated with rsFC between the right superficial amyg-dala and perigenual anterior cingulate cortex(pgACC)/postcentral gyrus(PCG)but not the other two amygdala subregions.Moreover,SFA-pgACC coupling was more associated with physical neglect whereas the SFA-PCG was more related to emotional neglect.In addi-tion,supervised machine learning confirmed that using these two rsFCs as predictors could stably estimate continuous maltreatment severity in both discovery and replication datasets.Conclusion:The current study supports that the rsFCs of superficial amygdala are related to childhood maltreatment and which may be a potential biomarker for the effects of childhood maltreatment-related psychiatric disorders(i.e.depression and anxiety).展开更多
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo...BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.展开更多
Objective:This study aims to determine the relationship between education level,memory function,and hippocampus functional and structural alterations in subjective cognitive decline(SCD).Methods:Seventy-five participa...Objective:This study aims to determine the relationship between education level,memory function,and hippocampus functional and structural alterations in subjective cognitive decline(SCD).Methods:Seventy-five participants with SCD were divided into high education(HE)and low education(LE)level groups.A Wechsler Memory Scale-Chinese Revision test and functional and structural MRI were performed within 1 week after participant recruitment.The bilateral hippocampus resting-state functional connectivity(rsF C),gray matter volume(GMV)of brain regions identified by rsF C analysis,and moderating and mediating effects were assessed.Results:Compared with the LE group,HE individuals showed 1)higher memory quotient(MQ)and Digit Span subscore,2)decreased hippocampal rs FC with the right medial prefrontal cortex(mPFC)and dorsolateral prefrontal cortex(DLPFC),and 3)increased GMV in the right mP FC and DLPFC.The bilateral hippocampus-right DLPFCrs FC significantly associated with the MQ and the bilateral hippocampus-right m PFCrs FC with the Digit Span subscore in each group.The bilateral hippocampus-right DLPFCrsFC moderated the relationship between the education level and MQ.The bilateral hippocampus-right mP FC rsF C mediated the relationship between the education level and Digit Span subscore in all subjects.Conclusion:The hippocampal rsF C with the right mP FC and DLPFC contributes to the education level effect on memory function in SCD.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Objective: To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Methods: Twelve MWoA patients were t...Objective: To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Methods: Twelve MWoA patients were treated with standard acupuncture treatment for 4 weeks. All MWoA patients received resting-state functional magnetic resonance imaging (fMRI) scanning before and after acupuncture treatment. Another 12 normal subjects matched in age and gender were recruited to serve as healthy controls. The changes of resting- state functional connectivity in MWoA patients before and after the acupuncture treatment and those with the healthy controls were compared. Results: Before acupuncture treatment, the MWoA patients had significantly decreased functional connectivity in certain brain regions within the frontal and temporal lobe when compared with the healthy controls. After acupuncture treatment, brain regions showing decreased functional connectivity revealed significant reduction in MWoA patients compared with before acupuncture treatment. Conclusions: Acupuncture treatment could increase the functional connectivity of brain regions in the intrinsic decreased brain networks in MWoA patients. The results provided further insights into the interpretation of neural mechanisms of acupuncture treatment for migraine.展开更多
Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain f...Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of function...The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.展开更多
AIM: To study the changes of the resting state functional connectivity(rsFC) between acute eye pain(EP) subjects and healthy controls(HCs) in the two hemispheres by using voxel-mirrored homotopic connectivity(VMHC) me...AIM: To study the changes of the resting state functional connectivity(rsFC) between acute eye pain(EP) subjects and healthy controls(HCs) in the two hemispheres by using voxel-mirrored homotopic connectivity(VMHC) method.METHODS: Totally 20 patients with EP and 20 HCs were enrolled, sex, age, and education were matched, and all subjects were examined by functional magnetic resonance imaging(fMRI) scans at resting-state. The changes of rs FC between the hemispheres were evaluated by the VMHC method according to Gaussian random field(GRF) theory. In order to identify the VMHC, as biomarkers for distinguishing EP and from HC, the receiver operating characteristic curves(ROC) had been analyzed. The relationships were evaluated with Pearson correlation analysis between the mean VMHC signal values and clinical features in these patients.RESULTS: By comparing with health subjects, the significant decreased VMHC values was observed in lingual/calcarine(Brodmann area, BA 30), precentral/postcentral gyrus(PreCG/PosCG; BA 4) and medial frontal gyrus(MFG; BA 8)(false discovery rate corrected <0.01) in the acute EP individuals. The accuracy of area under curve was excellent indicated by the ROC curve analysis of each brain regions.CONCLUSION: Our study demonstrates preliminary evidence of disrupted interhemispheric rsFC in acute EP in sensorimotor and limbic system and somatosensory cortex, which might give some useful information for understanding the neurological mechanisms in acute EP individuals.展开更多
This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relation...This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI.展开更多
Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influen...Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.展开更多
The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippoca...The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.展开更多
Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have ex...Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.展开更多
Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activit...Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence.展开更多
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
基金supported by National Natural Science Foundation of China (81171291, 81371531, 81571344, 81871344)the Natural Science Foundation of Jiangsu Province, China (BK20161109)+2 种基金the Key Program for Guangming Lu (BWS11J063, and 10z026)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (18KJB190003)the Postdoctoral Science Foundation of China (2014M552700)
文摘Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)remain unclear.The aim of this study was to investigate the possible mechanisms of PBD through brain imaging and explore the influence of psychotic symptoms on functional alterations in PBD patients.Twenty-nine psychotic and 26 non-psychotic PBD patients,as well as 19 age-and sex-matched healthy controls underwent a restingstate functional MRI scan and the data were analyzed by independent component analysis.The DMN component from the fMRI data was extracted for each participant.Spearman's rank correlation analysis was performed between aberrant connectivity and clinical measurements.The results demonstrated that psychotic PBD was characterized by aberrant DMN connectivity in the anterior cingulate cortex/medial prefrontal cortex,bilateral caudate nucleus,bilateral angular gyri,and left middle temporal gyrus,while non-psychotic PBD was not,suggesting further impairment with the development of psychosis.In summary,we demonstrated unique impairment in DMN functional connectivity in the psychotic PBD group.These specific neuroanatomical abnormalities may shed light on the underlying pathophysiology and presentation of PBD.
基金the Grup de Recerca en Tecniques Estadistiques Avancades Aplicades a la Psicologia(GTEAAP)members of the Generalitat de Catalunya’s 2014 SGR 326 Consolidated Research Group(GRC)the PSI2013-41400-P project of Ministerio de Economia y Competitividad of the Spanish Government
文摘Age-related changes in the brain connectivity of healthy older adults have been widely studied in recent years,with some differences in the obtained results.Most of these studies showed decreases in general functional connectivity,but they also found increases in some particular regions and areas.Frequently,these studies compared young individuals with older subjects,but few studies compared different age groups only in older populations.The purpose of this study is to analyze whole-brain functional connectivity in healthy older adult groups and its network characteristics through functional segregation.A total of 114 individuals,48 to 89 years old,were scanned using resting-state functional magnetic resonance imaging in a resting state paradigm and were divided into six different age groups(<60,60–64,65–69,70–74,75–79,≥80 years old).A partial correlation analysis,a pooled correlation analysis and a study of 3-cycle regions with prominent connectivity were conducted.Our results showed progressive diminution in the functional connectivity among different age groups and this was particularly pronounced between 75 and 79 years old.The oldest group(≥80 years old)showed a slight increase in functional connectivity compared to the other groups.This occurred possibly because of compensatory mechanism in brain functioning.This study provides information on the brain functional characteristics of every age group,with more specific information on the functional progressive decline,and supplies methodological tools to study functional connectivity characteristics.Approval for the study was obtained from the ethics committee of the Comision de Bioetica de la Universidad de Barcelona(approval No.PSI2012-38257)on June 5,2012,and from the ethics committee of the Barcelona’s Hospital Clinic(approval No.2009-5306 and 2011-6604)on October 22,2009 and April 7,2011 respectively.
文摘In light of ever-present partisan division in the US political system, it is critical that researchers gain a better under-standing of potential biological differences that exist between self-professed Democrats and Republicans. In the current pilot experiment, we examined differences within the human mirror neuron system (hMNS), a network linked to a host of social and emotional abilities, in a small group of self-identified Republicans and Democrats. We found clear differences between these two groups with respect to resting-state brain connectivity within the hMNS. These neural differences were not systematically related to differences in empathy. Our findings are consistent with the idea that other factors, such as one’s preferential type of social connectivity (broad vs. tight), may have driven the reported findings. These data provide novel insights regarding our knowledge of the biological basis of party identification, and suggest specific directions for future research.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金This project was supported by grants from National Natural Science Foundation of China(No.81701655 and No.81600317)Platform Research Foundation of Union Hospital,Tongji Medical College,Huazhong university of Science and Technology(No.02.03.2017-14).
文摘Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.
基金supported by the Fundamental Research Funds for the Central Universities,UESTC[grant number ZYGX2020J027-WHZ]Natural Science Foundation of sichuan Province[grant number 2022NSFSC1375-WHZ]+1 种基金Guangdong Basic and Applied Basic Research Foundation[grant number 2021A1515110511-WHZ]Sichuan Science and Technology Program[grant number 2020YFS0484 WXY].
文摘Background:Childhood maltreatment(CM)is a potential risk factor for some neuropsychiatric disorders in adulthood(e.g.depression and anxiety)and alters trajectories of brain development.Accumulating evidence suggests that functional connectivity of the limbic system,especially the amygdala,is highly associated with childhood maltreatment,although not all studies have found this.These inconsistent results may be due to differential alterations of amygdala resting-state functional connectivity(rsFC)following childhood maltreatment.Objective:Our aim was to investigate the relationship between the rsFC of amygdala subregions and CM severity,as well as to develop a stable rsFC-based model for inferring the severity of CM.Methods:In this study,we employed the Childhood Trauma Questionnaire(CTQ)to assess CM severity in each individual.We explored the relationship between the rsFC of amygdala subregions(i.e.centromedial-CMA,basolateral-BLA,superficial-SFA amygdala)and CM experience in a discovery dataset of n=110 healthy Chinese participants by linear multiple regression analysis.Subsequent dimensional and categorical approach were performed to elucidate the relationship between rsFCs and CM severity and CM subtypes,respectively.A support vector regression model was then conducted to validate the associations between rsFCs and total CTQ scores.Moreover,we also verified the model into another independent replication dataset(n=38).Results:Our findings suggested that childhood maltreatment was negatively associated with rsFC between the right superficial amyg-dala and perigenual anterior cingulate cortex(pgACC)/postcentral gyrus(PCG)but not the other two amygdala subregions.Moreover,SFA-pgACC coupling was more associated with physical neglect whereas the SFA-PCG was more related to emotional neglect.In addi-tion,supervised machine learning confirmed that using these two rsFCs as predictors could stably estimate continuous maltreatment severity in both discovery and replication datasets.Conclusion:The current study supports that the rsFCs of superficial amygdala are related to childhood maltreatment and which may be a potential biomarker for the effects of childhood maltreatment-related psychiatric disorders(i.e.depression and anxiety).
基金Supported by the Wuxi Municipal Health Commission Major Project,No.Z202107。
文摘BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.
基金supported by the National Natural Science Foundation of China(Grant No.81904270)Natural Science Foundation of Fujian Province(Grant No.2019J01362)+1 种基金Science and Technology Platform Construction Project of Fujian Science and Technology Department(Grant No.2015Y2001)Educational Department of Fujian Province Outstanding Youth Scientific Research Talent Cultivation Program(Grant No.Min Jiao Ke[2018]47)
文摘Objective:This study aims to determine the relationship between education level,memory function,and hippocampus functional and structural alterations in subjective cognitive decline(SCD).Methods:Seventy-five participants with SCD were divided into high education(HE)and low education(LE)level groups.A Wechsler Memory Scale-Chinese Revision test and functional and structural MRI were performed within 1 week after participant recruitment.The bilateral hippocampus resting-state functional connectivity(rsF C),gray matter volume(GMV)of brain regions identified by rsF C analysis,and moderating and mediating effects were assessed.Results:Compared with the LE group,HE individuals showed 1)higher memory quotient(MQ)and Digit Span subscore,2)decreased hippocampal rs FC with the right medial prefrontal cortex(mPFC)and dorsolateral prefrontal cortex(DLPFC),and 3)increased GMV in the right mP FC and DLPFC.The bilateral hippocampus-right DLPFCrs FC significantly associated with the MQ and the bilateral hippocampus-right m PFCrs FC with the Digit Span subscore in each group.The bilateral hippocampus-right DLPFCrsFC moderated the relationship between the education level and MQ.The bilateral hippocampus-right mP FC rsF C mediated the relationship between the education level and Digit Span subscore in all subjects.Conclusion:The hippocampal rsF C with the right mP FC and DLPFC contributes to the education level effect on memory function in SCD.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金Supported by the National Natural Science Foundation of China(No.81473667)Beijing Young Talent Program of Beijing Education Committee(No.YETP0823)the Research Funds of Beijing University of Chinese Medicine(No.2013-JYBZZJS-148,2014-JYBZZ-XS-142)
文摘Objective: To investigate the modulatory effect of acupuncture treatment on the resting-state functional connectivity of brain regions in migraine without aura (MWoA) patients. Methods: Twelve MWoA patients were treated with standard acupuncture treatment for 4 weeks. All MWoA patients received resting-state functional magnetic resonance imaging (fMRI) scanning before and after acupuncture treatment. Another 12 normal subjects matched in age and gender were recruited to serve as healthy controls. The changes of resting- state functional connectivity in MWoA patients before and after the acupuncture treatment and those with the healthy controls were compared. Results: Before acupuncture treatment, the MWoA patients had significantly decreased functional connectivity in certain brain regions within the frontal and temporal lobe when compared with the healthy controls. After acupuncture treatment, brain regions showing decreased functional connectivity revealed significant reduction in MWoA patients compared with before acupuncture treatment. Conclusions: Acupuncture treatment could increase the functional connectivity of brain regions in the intrinsic decreased brain networks in MWoA patients. The results provided further insights into the interpretation of neural mechanisms of acupuncture treatment for migraine.
基金supported by the National Natural Science Foundation of China(No.81473784)University Science Research Project of Anhui Province of China(No.KJ2017A298)+1 种基金the Key Project of the Youth Elite Support Plan in Universities of Anhui Province of China(No.gxyq ZD2016134)Construction Project of Scientific Research Innovation Platform of Anhui Province of China(No.2015TD033)
文摘Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
基金supported by the National Natural Science Foundation of China,No.61401308,61572063(both to XHW)the Natural Science Foundation of Beijing of China,No.L172055(to XHW)+3 种基金the Beijing Municipal Science&Technology Commission Research Fund of China,No.Z171100000417004(to XHW)the China Postdoctoral Fund,No.2018M631755(to XHW)the Special Fund for Improving Comprehensive Strength of Hebei University in the Midwest of China,No.801260201011(to XHW)the High-Level Talent Funding Project—Selective Post-doctoral Research Project Fund of Hebei Province of China,No.B2018003002(to XHW)
文摘The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.
基金Supported by National Natural Science Foundation of China(No.81660158 No.81400372)+1 种基金Natural Science Key Project of Jiangxi Province(No.20161ACB21017)Health Development Planning Commission Science Foundation of Jiangxi Province(No.20175116)
文摘AIM: To study the changes of the resting state functional connectivity(rsFC) between acute eye pain(EP) subjects and healthy controls(HCs) in the two hemispheres by using voxel-mirrored homotopic connectivity(VMHC) method.METHODS: Totally 20 patients with EP and 20 HCs were enrolled, sex, age, and education were matched, and all subjects were examined by functional magnetic resonance imaging(fMRI) scans at resting-state. The changes of rs FC between the hemispheres were evaluated by the VMHC method according to Gaussian random field(GRF) theory. In order to identify the VMHC, as biomarkers for distinguishing EP and from HC, the receiver operating characteristic curves(ROC) had been analyzed. The relationships were evaluated with Pearson correlation analysis between the mean VMHC signal values and clinical features in these patients.RESULTS: By comparing with health subjects, the significant decreased VMHC values was observed in lingual/calcarine(Brodmann area, BA 30), precentral/postcentral gyrus(PreCG/PosCG; BA 4) and medial frontal gyrus(MFG; BA 8)(false discovery rate corrected <0.01) in the acute EP individuals. The accuracy of area under curve was excellent indicated by the ROC curve analysis of each brain regions.CONCLUSION: Our study demonstrates preliminary evidence of disrupted interhemispheric rsFC in acute EP in sensorimotor and limbic system and somatosensory cortex, which might give some useful information for understanding the neurological mechanisms in acute EP individuals.
基金Supported by the National Natural Science Foundation of China(No.81660158No.81400372)+1 种基金Natural Science Key Project of Jiangxi Province(No.20161ACB21017)Health Development Planning Commission Science Foundation of Jiangxi Province(No.20175116)
文摘This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI.
基金supported by the Institute for Basic Science[grant No.IBS-R015-D1]the National Research Foundation of Korea(grant No.NRF-2016R1A2B4008545)
文摘Attention deficit and hyperactivity disorder(ADHD) is a disorder characterized by behavioral symptoms including hyperactivity/impulsivity among children,adolescents,and adults.These ADHD related symptoms are influenced by the complex interaction of brain networks which were under explored.We explored age-related brain network differences between ADHD patients and typically developing(TD) subjects using resting state f MRI(rs-f MRI) for three age groups of children,adolescents,and adults.We collected rs-f MRI data from 184 individuals(27 ADHD children and 31 TD children;32 ADHD adolescents and 32 TD adolescents;and 31 ADHD adults and 31 TD adults).The Brainnetome Atlas was used to define nodes in the network analysis.We compared three age groups of ADHD and TD subjects to identify the distinct regions that could explain age-related brain network differences based on degree centrality,a well-known measure of nodal centrality.The left middle temporal gyrus showed significant interaction effects between disease status(i.e.,ADHD or TD) and age(i.e.,child,adolescent,or adult)(P 0.001).Additional regions were identified at a relaxed threshold(P 0.05).Many of the identified regions(the left inferior frontal gyrus,the left middle temporal gyrus,and the left insular gyrus) were related to cognitive function.The results of our study suggest that aberrant development in cognitive brain regions might be associated with age-related brain network changes in ADHD patients.These findings contribute to better understand how brain function influences the symptoms of ADHD.
基金supported by the National Natural Science Foundation of China (30825014,81061120529,30970814,81371488,91132727 and 30830046)the Key Program for Clinical Medicine and Science and Technology,Jiangsu Provincial Clinical Medical Research Center,China (BL2013025)
文摘The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.
基金supported in part by the Institute for Basic Science(to HP)No.IBS-R015-D1
文摘Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.
基金supported by grants from the Nanjing Medical Technology Development Project(No.YKK19059)Excellent Young Doctor Training Program of Jiangsu Province Hospital of Chinese Medicine(No.2023QB0126)+1 种基金Jiangsu Province Graduate Research and Practice Innovation Program Project-School Assisted General Project(No.SJCX23_0804)the General project of Natural Science Foundat。
文摘Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence.