期刊文献+
共找到6,345篇文章
< 1 2 250 >
每页显示 20 50 100
Utilizing Machine Learning Techniques to Enhance Attention-Deficit Hyperactivity Disorder Diagnosis Using Resting-State EEG Data
1
作者 Lina Han Liyan Li +6 位作者 Yanyan Chen Xiaohan Wu Yang Yu Xu Liu Zihan Yang Ling Li Xinxian Peng 《Journal of Clinical and Nursing Research》 2025年第1期209-217,共9页
Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Metho... Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Methods: Resting-state EEG recordings were obtained from 57 children, comprising 28 typically developing children and 29 children diagnosed with ADHD. The EEG signal data from both groups were analyzed. To ensure analytical accuracy, artifacts and noise in the EEG signals were removed using the EEGLAB toolbox within the MATLAB environment. Following preprocessing, a comparative analysis was conducted using various ensemble learning algorithms, including AdaBoost, GBM, LightGBM, RF, XGB, and CatBoost. Model performance was systematically evaluated and optimized, validating the superior efficacy of ensemble learning approaches in identifying ADHD. Conclusion: Applying machine learning techniques to extract features from resting-state EEG signals enabled the development of effective ensemble learning models. Differential entropy and energy features across multiple frequency bands proved particularly valuable for these models. This approach significantly enhances the detection rate of ADHD in children, demonstrating high diagnostic efficacy and sensitivity, and providing a promising tool for clinical application. 展开更多
关键词 Attention-deficit hyperactivity disorder Machine learning eeg signals Feature extraction Ensemble learning models DIAGNOSIS
暂未订购
Quantitative analysis of the resting-state EEG power spectrum in patients with epilepsy comorbid with anxiety and depression
2
作者 Hongxing Chen Juan Yang +7 位作者 Bo Zhang Lijia Zhang Jing Wang Haiqing Zhang Hongwei Zhang Changyin Yu Jun Zhang Zucai Xu 《Acta Epileptologica》 2025年第2期199-208,共10页
Background Epilepsy is one of the common clinical disorders with comorbid anxiety and depression that severely afects their quality of life and increases their suicidality,while screening for anxiety and depression cu... Background Epilepsy is one of the common clinical disorders with comorbid anxiety and depression that severely afects their quality of life and increases their suicidality,while screening for anxiety and depression currently lacks objective identifers.This study aimed to analyze the characteristics of the electroencephalogram(EEG)power spectrum in patients with epilepsy with comorbid anxiety and depression,utilizing resting EEG data.Methods Resting EEG data were collected under standard conditions from two groups:patients with epilepsy comorbid with anxiety and depression(n=42)and patients without comorbidities(n=45).EEG power was calculated using data processing with EEGLAB and MATLAB.This study compared the absolute and relative powers of theδ,θ,α,β,andγfrequency bands,as well as the values of(δ+θ)/(α+β),between the two groups.Additionally,the correlation between the EEG power of each frequency band and anxiety and depression scores was analyzed.Results 1)Among individuals with epilepsy comorbid with anxiety and depression,lower absolute power ofδ,α,andθat specifc sites was observed(P<0.05),along with lower relative power ofθat certain sites(P<0.05).Conversely,higher relative power ofβandγat specifc sites was noted in those with comorbidities(P<0.05).2)There was no statistically signifcant diference in the values of(δ+θ)/(α+β)between the two groups(P>0.05).3)Depression scores exhibited a negative correlation withθabsolute power at the T3 and T4 sites(P<0.05),while showing a positive correlation withβrelative power at the C4 and T6 sites(P<0.05).Anxiety scores displayed a positive correlation withβrelative power at the F4,C3,C4 and T6 sites andγrelative power at F8 site(P<0.05).Conclusions The fndings suggest that comorbid anxiety and depression may impact resting EEG power spectra in individuals with epilepsy,particularly in regions exhibiting altered network connectivity.Furthermore,a positive correlation was observed between anxiety and depression scores andβrelative power in the right central and right posterior temporal regions,indicating potential screening utility. 展开更多
关键词 EPILEPSY COMORBIDITY ANXIETY DEPRESSION eeg power spectrum
原文传递
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
3
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
暂未订购
Identification of key brain networks and functional connectivities of successful aging:A surface-based resting-state functional magnetic resonance study
4
作者 Jiao-Jiao Sun Li Zhang +3 位作者 Ru-Hong Sun Xue-Zheng Gao Chun-Xia Fang Zhen-He Zhou 《World Journal of Psychiatry》 2025年第3期216-226,共11页
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo... BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA. 展开更多
关键词 Successful aging resting-state functional magnetic resonance imaging Surface-based brain network analysis Functional connectivity Support vector machine algorithm
暂未订购
Dynamic changes of spontaneous brain activity in patients after LASIK:a resting-state fMRI study
5
作者 Hui Zhang Zi-Song Xu +11 位作者 Jin-Yu Hu Zhen-Zhe Liu Lei Zhong Liang-Qi He Cheng Chen Xiao-Yu Wang Hong Wei Yan-Mei Zeng Qian Ling Xu Chen Yi-Xin Wang Yi Shao 《International Journal of Ophthalmology(English edition)》 2025年第3期487-495,共9页
AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished... AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished by differences in dynamic amplitude of low-frequency fluctuations(dALFF)in specific brain regions.METHODS:The resting-state functional magnetic resonance imaging(rs-fMRI)data were collected from 15 myopic patients who underwent LASIK and 15 matched healthy controls.This method was selected to calculate the corresponding dALFF values of each participant,to compare dALFF between the groups and to determine whether dALFF distinguishes reliably between myopic patients after LASIK and HCs using the linear support vector machine(SVM)permutation test(5000 repetitions).RESULTS:dALFF was lower in POL than in HCs at the right precentral gyrus and right insula.Classification accuracy of the SVM was 89.1%(P<0.001).CONCLUSION:The activity of spontaneous neurons in the right precentral gyrus and right insula of myopic patients change significantly after LASIK.SVM can correctly classify POL patients and HCs based on dALFF differences. 展开更多
关键词 laser assisted in situ keratomileusis resting-state functional magnetic resonance imaging dynamic brain activity amplitude of low-frequency fluctuations support vector machine
原文传递
Voxel-based alterations in spontaneous brain activity among verylate-onset schizophrenia-like psychosis:A preliminary resting-state functional magnetic resonance imaging study
6
作者 Dan-Ting Yang Ping Ji +4 位作者 Jiao-Jiao Sun Yan-Sha Gan Shuai-Yi Guo Zhen-He Zhou Xue-Zheng Gao 《World Journal of Psychiatry》 2025年第3期66-77,共12页
BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence o... BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms. 展开更多
关键词 Very-late-onset schizophrenia-like psychosis SCHIZOPHRENIA resting-state functional magnetic resonance imaging Amplitude of low-frequency fluctuations Fractional amplitude of low-frequency fluctuations Regional homogeneity Voxelmirrored homotopic connectivity
暂未订购
A radiomics approach for predicting gait freezing in Parkinson's disease based on resting-state functional magnetic resonance imaging indices:A cross-sectional study
7
作者 Miaoran Guo Hu Liu +6 位作者 Long Gao Hongmei Yu Yan Ren Yingmei Li Huaguang Yang Chenghao Cao Guoguang Fan 《Neural Regeneration Research》 2026年第4期1621-1627,共7页
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice... Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease. 展开更多
关键词 amplitude of low-frequency fluctuation degree centrality feedforward neural network freezing of gait machine learning parahippocampal gyrus Parkinson's disease receiver operating characteristic regional homogeneity resting-state functional magnetic resonance imaging
暂未订购
基于EEG分析的高校室内学习空间芳香植物对大学生注意力恢复效益研究 被引量:1
8
作者 李同予 羿可 +2 位作者 安欣 薛滨夏 赖锦玉 《西部人居环境学刊》 北大核心 2025年第4期51-58,共8页
为改善高校学生群体的身心健康状况,提升校园室内学习空间的注意力恢复效益,选取茉莉、柠檬和香薄荷三种植物作为芳香疗法的应用材料,以脑电波信号数据评估被试的注意力集中水平反映其恢复性效益,以简易心理状况评定量表获取被试初始心... 为改善高校学生群体的身心健康状况,提升校园室内学习空间的注意力恢复效益,选取茉莉、柠檬和香薄荷三种植物作为芳香疗法的应用材料,以脑电波信号数据评估被试的注意力集中水平反映其恢复性效益,以简易心理状况评定量表获取被试初始心理状态,采用生理指标与心理指标相结合的方法对不同种类、不同气味强度的活体芳香植物对不同心理状态下高校学生群体的注意力恢复作用展开探究。结果表明,在高校室内学习空间中应用芳香疗法对处于学习状态下的学生群体具有一定的注意力恢复作用,并且活体芳香植物的种类、气味强度不同程度地影响了其注意力恢复水平,而被试本身的心理状态对恢复作用影响不大。芳香疗法的应用是提升高校室内学习空间注意力恢复效益的可靠途径,需合理配置适当气味强度下的活体芳香植物以达到最佳的注意力恢复效果。 展开更多
关键词 大学校园恢复性环境 芳香疗法 注意力恢复 室内学习空间 eeg分析
在线阅读 下载PDF
Demystifying signal processing techniques to extract resting-state EEG features for psychologists 被引量:2
9
作者 Zhenjiang Li Libo Zhang +3 位作者 Fengrui Zhang Ruolei Gu Weiwei Peng Li Hu 《Brain Science Advances》 2020年第3期189-209,共21页
Electroencephalography(EEG)is a powerful tool for investigating the brain bases of human psychological processes non-invasively.Some important mental functions could be encoded by resting-state EEG activity;that is,th... Electroencephalography(EEG)is a powerful tool for investigating the brain bases of human psychological processes non-invasively.Some important mental functions could be encoded by resting-state EEG activity;that is,the intrinsic neural activity not elicited by a specific task or stimulus.The extraction of informative features from resting-state EEG requires complex signal processing techniques.This review aims to demystify the widely used resting-state EEG signal processing techniques.To this end,we first offer a preprocessing pipeline and discuss how to apply it to resting-state EEG preprocessing.We then examine in detail spectral,connectivity,and microstate analysis,covering the oft-used EEG measures,practical issues involved,and data visualization.Finally,we briefly touch upon advanced techniques like nonlinear neural dynamics,complex networks,and machine learning. 展开更多
关键词 resting-state eeg PREPROCESSING spectral analysis connectivity analysis microstate analysis
原文传递
基于脑电图(EEG)技术探究大脑对柑橘风味的感知反应 被引量:1
10
作者 程焕 赵前 +1 位作者 刘东红 叶兴乾 《中国食品学报》 北大核心 2025年第3期1-11,共11页
柑橘风味是食品饮料市场中长期占据统御地位的风味之一,而相关研究多采用主观性调查形式,对其神经感知机制的探索有限。本研究在感官评价的基础上,采用脑电图(EEG)技术探究大脑对4种柑橘精油【甜橙精油(S-EO)、柠檬精油(L-EO)、佛手柑精... 柑橘风味是食品饮料市场中长期占据统御地位的风味之一,而相关研究多采用主观性调查形式,对其神经感知机制的探索有限。本研究在感官评价的基础上,采用脑电图(EEG)技术探究大脑对4种柑橘精油【甜橙精油(S-EO)、柠檬精油(L-EO)、佛手柑精油(B-EO)和葡萄柚精油(G-EO)】以及柑橘精油主要组分D-柠檬烯的电生理反应。结果表明,大脑对不同柑橘风味展现出独特的感知反应模式。与D-柠檬烯相比,嗅闻柑橘精油引发了更强的脑电活动,特别是在1 Hz和10 Hz两个频段表现出显著活跃。柑橘精油普遍显著增强了α节律的能量,而L-EO同时引起δ节律能量显著增强(P<0.05)。此外,嗅闻柑橘精油主要引起大脑额叶区和中央区更强的脑电活动,特别是前额叶区(P<0.05),表明大脑对柑橘精油的感知过程涉及高级认知加工区域,柑橘精油可能具有潜在的情绪调节和认知提升作用。本研究揭示了柑橘精油在嗅觉感知中的脑电活动特征,为探究柑橘风味的神经感知机制提供了科学依据,同时为食品设计和消费者偏好预测开辟了新方向。 展开更多
关键词 柑橘风味 精油 脑电图 感知 神经成像 感官评价
在线阅读 下载PDF
基于EEG与机器学习的酒精刺激感知神经解码及脑区分区策略的对比研究
11
作者 程焕 王广南 +1 位作者 刘东红 叶兴乾 《中国食品学报》 北大核心 2025年第6期14-26,共13页
乙醇含量对酒精饮料风味特征和感官体验起关键作用。然而,其神经感知机制仍未完全明晰,这在一定程度上制约了对酒精饮料感官评价进行客观量化的进程。脑电图(EEG)作为一种高时间分辨率的神经影像技术,能够为解析酒精刺激的神经生理基础... 乙醇含量对酒精饮料风味特征和感官体验起关键作用。然而,其神经感知机制仍未完全明晰,这在一定程度上制约了对酒精饮料感官评价进行客观量化的进程。脑电图(EEG)作为一种高时间分辨率的神经影像技术,能够为解析酒精刺激的神经生理基础提供有效手段。然而,不同的脑区分区方式可能影响EEG特征提取与建模精度,进而影响其预测性能。鉴于此,本研究系统比较了10-10传统解剖学分区与Yeo-7功能分区在EEG预测酒精刺激评分任务中的适用性,并运用8种机器学习模型展开对比分析。研究结果表明,相较于10-10解剖学分区,Yeo-7功能分区显著提升了模型的预测性能,其中线性回归(R2=0.76)和支持向量机(R2=0.74)表现最佳。此外,特征贡献度分析显示,边缘系统(Limbic Network)、额顶控制网络(Frontoparietal Network,FPN)和腹侧注意网络(Ventral Attention Network,VAN)在EEG预测中贡献较高,表明功能性分区能够更准确地提取酒精刺激相关的神经信号。本研究证实基于功能连接的脑区划分在EEG预测建模中的优越性,并为EEG在风味感知、神经科学及食品科学等领域的应用开拓了新的研究思路。 展开更多
关键词 酒精饮料 风味感知 脑电图 机器学习
在线阅读 下载PDF
“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效观察及EEG脑电机制研究 被引量:1
12
作者 霍岩 陈泽勋 +5 位作者 刘广宇 郑伟 陈斯 纪万里 李明 张剑宁 《中国中西医结合耳鼻咽喉科杂志》 2025年第1期11-17,5,共8页
目的 观察“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效,运用生物反馈仪采集分析患者EEG,探讨其脑电中枢机制。方法 选取于上海中医药大学附属岳阳中西医结合医院耳鼻咽喉科耳鸣专病门诊2022年7月~2023年10月期间就诊的心脾两虚型特... 目的 观察“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效,运用生物反馈仪采集分析患者EEG,探讨其脑电中枢机制。方法 选取于上海中医药大学附属岳阳中西医结合医院耳鼻咽喉科耳鸣专病门诊2022年7月~2023年10月期间就诊的心脾两虚型特发性耳鸣患者304例,随机分为基础治疗组(耳鸣交流解惑+声治疗,例=152)和“鸣安方”组(基础治疗+鸣安方治疗,例=152)。治疗2周后对两组患者治疗前后进行耳鸣残疾量表(THI)、阿森斯失眠量表(AIS)、视觉模拟评分(VAS)、焦虑自评量表(SAS)、抑郁自评量表(SDS)及纯音听阈(PTA)评估,比较两组的临床疗效。同时运用生物反馈仪采集分析鸣安方组患者治疗前后EEG,分析治疗前后δ波、θ波、α波、β波能量值及SMR节律变化,比较心脾两虚型主观特发性耳鸣患者在“鸣安方”治疗前后的脑电波变化趋势。结果 (1)两组治疗后THI评分较治疗前均明显降低(P<0.001),鸣安方组THI评分较基础治疗组低(P<0.05);(2)两组治疗后VAS评分较治疗前均明显降低(P<0.05),治疗结束后,鸣安方组VAS评分较基础治疗组明显降低(P<0.05);(3)鸣安方组治疗后AIS、SDS评分较治疗前均明显降低(P<0.001),治疗后鸣安方组AIS、SDS评分较基础治疗组明显降低(P<0.001,P<0.05);(4)鸣安方组治疗后SAS评分较治疗前降低(P<0.05),治疗结束后两组SAS评分无差异(P>0.05);(5)鸣安方组患者δ波、β波能量值较治疗前明显降低(P<0.01,P<0.001),α波能量值显著升高(P<0.05),基础治疗组δ波、β波能量值较治疗前明显降低(P<0.001,P<0.01)。治疗后两组间比较,鸣安方组α波能量值高于基础治疗组(P<0.05),β波能量值显著低于基础治疗组(P<0.05)。结论 鸣安方可改善心脾两虚型耳鸣患者主观感受,尤其对缓解焦虑、抑郁及睡眠障碍等不良伴随症状疗效显著,可能与提高患者α波、降低β波能量值有关。 展开更多
关键词 鸣安方 特发性耳鸣 心脾两虚 eeg
暂未订购
基于卷积内SWCS的时间卷积网络对MI-EEG解码
13
作者 付荣荣 祝悦 +1 位作者 李林玉 路斌 《计量学报》 北大核心 2025年第6期910-916,共7页
传统的机器学习方法中脑电信号通常需要经过繁琐的预处理和特征工程才能进行解码。如何构建一个能够快速、可靠地解码运动想象脑电信号的端到端深度学习网络,成为当前运动想象脑电信号解码研究的关键问题。因此,在结合卷积内滑动窗口裁... 传统的机器学习方法中脑电信号通常需要经过繁琐的预处理和特征工程才能进行解码。如何构建一个能够快速、可靠地解码运动想象脑电信号的端到端深度学习网络,成为当前运动想象脑电信号解码研究的关键问题。因此,在结合卷积内滑动窗口裁剪策略(sliding window cropping strategy,SWCS)和时间卷积网络(temporal convolutional network,TCN)的基础上,提出一种新的卷积内SWCS的时间卷积网络,并使用该网络对运动想象脑电信号进行识别研究。该网络利用二维卷积提取脑电信号的浅层特征,使用卷积内SWCS将时间序列划分为多个时间窗口,然后将二维卷积提取的脑电信号浅层特征输送到TCN网络中提取时间序列中更高级的时间特征。在第Ⅳ届脑机接口竞赛的数据集上的分类结果表明,卷积内SWCS的时间卷积网络的分类效果优秀。 展开更多
关键词 脑电信号 卷积内SWCS 运动想象 时间卷积网络 信号解码 脑机接口
在线阅读 下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents 被引量:2
14
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT Support vector machine Machine learning resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
暂未订购
基于EEG的室内光热辐射下的碳排放-热舒适关联机制研究
15
作者 侯可明 李云豪 +3 位作者 高培平 李林峰 于川峰 王海宁 《西安建筑科技大学学报(自然科学版)》 北大核心 2025年第2期271-279,共9页
室内光热辐射是人体获得能量的有效方式,然而不同光热辐射下的人体舒适度与碳排放的关联机制缺少相关研究.本研究以年轻人和老年人为研究对象,借助EEG(Electroencephalogram)脑电设备,研究不同光热辐射工况下人体舒适度与设备碳排放的关... 室内光热辐射是人体获得能量的有效方式,然而不同光热辐射下的人体舒适度与碳排放的关联机制缺少相关研究.本研究以年轻人和老年人为研究对象,借助EEG(Electroencephalogram)脑电设备,研究不同光热辐射工况下人体舒适度与设备碳排放的关系.研究发现,额叶区平均功率、α和θ波段的平均功率均与TCV显著相关.在低碳排放工况下,老年人在照射下身+上身+头部时更舒适,而年轻人在照射下身+上身时更舒适.此外,在选择辐射取暖方式时,低功率+多照射区域的组合方式相比高功率+少照射区域的组合方式在满足老年人热舒适的同时也能有效减少碳排放.本研究借助EEG揭示了不同人群舒适度与碳排放的关联机制,为室内健康光热环境营造提供了新思路. 展开更多
关键词 光热辐射 eeg 碳排放 人体舒适度 关联机制
在线阅读 下载PDF
静息态EEG/MEG的非周期性成分:分析流程、应用进展和未来前景 被引量:1
16
作者 胡静怡 白朵 雷旭 《心理科学进展》 北大核心 2025年第8期1321-1339,I0001,共20页
功率谱分析是EEG/MEG数据处理中的常用方法,近年来越来越多的研究者认识到功率谱的非周期性成分具有独特的生理意义与应用价值。随着国际上以频谱参数拟合算法(SpecParam)为代表的工具包的推广使用,静息态EEG/MEG的非周期分析受到广泛... 功率谱分析是EEG/MEG数据处理中的常用方法,近年来越来越多的研究者认识到功率谱的非周期性成分具有独特的生理意义与应用价值。随着国际上以频谱参数拟合算法(SpecParam)为代表的工具包的推广使用,静息态EEG/MEG的非周期分析受到广泛关注。本文首先介绍了在高密度EEG/MEG中进行非周期分析的常规流程。之后总结应用上的两个主要进展:在发展神经科学方面,老年人的频谱平坦化与认知表现下降、睡眠质量变差高度相关。在临床应用方面,非周期性参数可以作为多种神经精神疾病的电生理标志物。目前,非周期分析还缺少对全脑空间分布的关注,其神经生理生成机制尚处于探索期,未来需要结合多模态脑成像技术、实验设计等创新方向进一步筑牢理论基础,拓展应用范围。 展开更多
关键词 非周期性成分 eeg/MEG 功率谱 无标度性 静息态
在线阅读 下载PDF
基于通道加权的多模态特征融合用于EEG疲劳驾驶检测
17
作者 程文鑫 闫光辉 +2 位作者 常文文 吴佰靖 黄亚宁 《浙江大学学报(工学版)》 北大核心 2025年第9期1775-1783,1802,共10页
针对疲劳驾驶检测方法泛化能力差、特征提取模式单一、模型不可解释等问题,提出多模态特征融合模型nsNMF-PCNN-GRU-MSA,通过分析驾驶员脑电图(EEG)信号实现疲劳程度的检测.在网络浅层设计通道加权模块,引入非平滑非负矩阵分解(nsNMF)算... 针对疲劳驾驶检测方法泛化能力差、特征提取模式单一、模型不可解释等问题,提出多模态特征融合模型nsNMF-PCNN-GRU-MSA,通过分析驾驶员脑电图(EEG)信号实现疲劳程度的检测.在网络浅层设计通道加权模块,引入非平滑非负矩阵分解(nsNMF)算法计算电极通道的贡献度;在网络中层设计多模态特征融合模块,引入格拉姆角场成像方法将一维EEG数据映射成二维图像,并采用PCNN-GRU并行方式融合不同模态的时空特征;在网络深层融合多头自注意力机制(MSA),完成疲劳驾驶状态分类任务.实验结果表明,该模型在数据集SEED-VIG和SAD的混合样本上的疲劳检测准确率分别为93.37%、90.78%,单个被试数据准确率最低分别为86.60%、85.59%,高于近年先进模型.将特征激活值映射到大脑拓扑图上的分析方法不仅提高了模型的可解释性,而且为疲劳驾驶检测提供了新视角. 展开更多
关键词 eeg 疲劳驾驶检测 nsNMF 格拉姆角场 多模态特征融合 模型可解释性
在线阅读 下载PDF
Altered regional brain activity and functional connectivity in primary intravaginal anejaculation patients revealed by resting-state fMRI
18
作者 Qing-Qiang Gao Jian-Huai Chen +5 位作者 Jia-Ming Lu Bin Wang You-Feng Han Song-Zhan Gao Jie Yang Yu-Tian Dai 《Asian Journal of Andrology》 SCIE CAS CSCD 2024年第5期510-516,共7页
Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activit... Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence. 展开更多
关键词 fractional amplitude of low-frequency fluctuation functional connectivity primary intravaginal anejaculation regional homogeneity resting-state functional magnetic resonance imaging
原文传递
基于EEG-TCNet的运动想象脑电识别方法 被引量:1
19
作者 李卫校 凌六一 《重庆工商大学学报(自然科学版)》 2025年第1期123-128,共6页
目的针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘各频段之间相关性的问题,在主流E... 目的针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘各频段之间相关性的问题,在主流EEG-TCNet解码方法的基础上提出了一种样本扩充和多尺度的解码方法。方法首先,对运动想象脑电信号进行分割,以增加数据集样本数,将运动想象脑电信号等间隔下采样成3个不同的子序列,每个子序列都含有与原始运动想象脑电信号相同的数据特征;其次,使用EEGNet对每个子序列进行特征提取,对不同的子序列使用不同尺度的EEGNet以便提取不同频段的特征;之后,对每个经过EEGNet提取后的子序列采用一种基于卷积滑动的方法再进分割,充分挖掘每个子序列潜在的信息;再次,将每个处理后的子序列传入到时间卷积网络进行特征提取和降维;最后,对所有处理后的子序列进行拼接、平均操作,并传入到全连接层进行识别。结果在公开的BCI竞赛数据集Ⅳ-2a上进行验证,所做出改进的网络相对于EEG-TCNet、EEGNet的解码准确度分别有5.19%和7.7%的提升。结论证明所做出改进的网络在运动想象脑电信号识别任务中具有更理想的解码性能。 展开更多
关键词 eeg-TCNet 运动想象脑电信号 卷积神经网络 时间卷积网络
在线阅读 下载PDF
面向癫痫EEG信号检测的对抗混合TSK模糊分类器
20
作者 于林表 卞则康 +2 位作者 瞿佳 张进 王士同 《计算机科学与探索》 北大核心 2025年第12期3395-3411,共17页
近年来,基于栈式集成结构的深度TSK(Takagi-Sugeno-Kang)模糊分类器已成为TSK模糊分类器研究热点之一,与传统单一的TSK模糊分类器相比,深度TSK模糊分类器不仅具有增强的泛化能力,而且具有较好的可解释性。然而,当深度TSK模糊分类器应用... 近年来,基于栈式集成结构的深度TSK(Takagi-Sugeno-Kang)模糊分类器已成为TSK模糊分类器研究热点之一,与传统单一的TSK模糊分类器相比,深度TSK模糊分类器不仅具有增强的泛化能力,而且具有较好的可解释性。然而,当深度TSK模糊分类器应用于癫痫脑电图(EEG)信号检测时,需要解决如下两个挑战:(1)如何改进现有的深度结构,在保证癫痫EEG信号检测精度的基础上,加快模型的构建速度并同时提高模型的可解释性(更少的规则数和提供两种类型的可解释性);(2)如何利用人类认知行为,进一步提升深度TSK模糊分类器的泛化能力。为了解决上述两个挑战,提出面向癫痫EEG信号检测的对抗混合TSK模糊分类器(AH-TSK)。针对挑战(1),在现有深度栈式集成结构的基础上,引入宽度集成结构,从而提出一种新型的基于深度和宽度的混合集成结构,集成单个线性子模型(SRLc)和多个非线性子模型(A-TSK);针对挑战(2),基于“从全局粗略到局部精细化”和“知识遗弃”这两种认知行为,提出了一种新的对抗训练方法。该方法先在EEG数据集的所有原始样本上训练线性模型(SRLc),以分类非线性分布的样本;在得到的非线性部分上,引入“知识遗弃”的对抗策略,并行训练多个A-TSK;通过使用最近标签策略,对SRLc和所有A-TSK的输出进行集成得到最终输出。实验结果表明,与对比方法相比,AH-TSK具有增强的泛化能力、较快的运行速度以及较好的可解释性,此外能够提供更多类型的可解释性(语义和基于特征重要性的可解释性)。 展开更多
关键词 混合TSK模糊分类器 癫痫脑电图(eeg)信号检测 对抗训练方法 基于特征重要性的可解释性 语义可解释性
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部