期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Magnetically-responsive phase change thermal storage materials:Mechanisms,advances,and beyond
1
作者 Yan Gao Yang Li +3 位作者 Jinjie Lin Panpan Liu Xiao Chen Ge Wang 《Journal of Energy Chemistry》 2025年第2期485-510,I0010,共27页
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials... Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs. 展开更多
关键词 Phase change materials Magnetic-thermal conversion Magnetic nanoparticles Thermal energy storage Response mechanism
在线阅读 下载PDF
Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite
2
作者 Yemao He Johnny Qing Zhou +3 位作者 Yanan Jiao Hongshuai Lei Zeang Zhao Daining Fang 《Defence Technology(防务技术)》 2025年第2期1-16,共16页
The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response ... The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy. 展开更多
关键词 UHMWPE composite Ballistic response mechanism Theoretical model Performance evaluation
在线阅读 下载PDF
Mechanical response and failure mechanism of inclined rough jointed rock under true triaxial compression loading
3
作者 LIU Han-xiang JING Hong-wen +3 位作者 YUAN Yong YIN Qian WEN Fan LI Bo 《Journal of Central South University》 2025年第10期4012-4034,共23页
Rock-like specimens containing a joint with different inclination angles and roughness were prepared using 3D printing technology.Then,true triaxial compression loading experiments were conducted on those jointed spec... Rock-like specimens containing a joint with different inclination angles and roughness were prepared using 3D printing technology.Then,true triaxial compression loading experiments were conducted on those jointed specimens.The increase in roughness leads to an increase in the axial strength and peak strain.With the increasing inclination angle,the axial strength initially decreases from 30°to 60°and then increases from 60°to 90°.While the peak strain first rises from 30°to 45°and then declines from 45°to 90°.The variation in failure mode results from differences in lateral stress on the joints under different strike directions.Specimens with joint strike parallel to the intermediate principal stress predominantly showed matrix or matrix-joint mixed shear failure,whereas those parallel to the minimum principal stress exhibited matrix shear failure.The analysis results of acoustic emission signals indicate the crack number and shear crack percentage increase with the increasing roughness and first decrease(30°to 60°),then increase(60°to 90°)with the increasing inclination angle.The research results can provide some guidance for the design and support of underground engineering with jointed surrounding rock. 展开更多
关键词 jointed rock true triaxial compression test mechanical response failure mechanism
在线阅读 下载PDF
Shear mechanical responses and debonding failure mechanisms of bolt-resin-rock anchoring system under dynamic normal load boundary
4
作者 Xinxin Nie Qian Yin +5 位作者 Zhigang Tao Manchao He Gang Wang Wenhua Zha Zhaobo Li Yajun Ren 《International Journal of Mining Science and Technology》 2025年第9期1603-1625,共23页
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th... Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone. 展开更多
关键词 Anchoring structure Dynamic normal load boundary Shear mechanical responses Debonding failure Discrete element method
在线阅读 下载PDF
External blast flow field evolution and response mechanism of single-layer reticulated dome structure 被引量:5
5
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期241-253,共13页
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin... Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes. 展开更多
关键词 External blast loading Reticulated dome structure Fluid-structure interaction Dynamic response mode Response mechanism
在线阅读 下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:8
6
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 Mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy High-speed impact loading
在线阅读 下载PDF
The effect of strain rate on compressive behavior and failure mechanism of CMDB propellant 被引量:5
7
作者 Heng-ning Zhang Hai Chang +2 位作者 Xiao-jiang Li Xiong-gang Wu Qi-wen He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期467-475,共9页
The compressive mechanical behavior of composite modified double base(CMDB)propellant was investigated across a wide scope of strain rates ranging from 10^(-3) s^(-1) to 4210 s^(-1) at room temperature,by applying a c... The compressive mechanical behavior of composite modified double base(CMDB)propellant was investigated across a wide scope of strain rates ranging from 10^(-3) s^(-1) to 4210 s^(-1) at room temperature,by applying a conventional universal testing machine and a split Hopkinson tension bar(SHPB),respectively.The derived stress-strain curves at different strain rates show a strong rate dependence,indicated that yield stress,ultimate stress and strain energy density of CMDB propellant all increase with strain rate by following a power law function,while the amplification of increase are different.The deformation and damage modes of CMDB propellant has changed from a typical ductile manner(cracking along the axial direction)to a brittle manner(maximum shear failure)with increasing of strain rate.Scanning electron microscopy(SEM)was employed to explore the microscopic failure characteristics of CMDB propellant.Under quasi-static loading,the nearly parallel micro-cracks propagating along the axial direction and the debonding of RDX particle without particle crushing can be observed.While under dynamic loading,the micro-crack is 45 angle to the axial direction,and multiple cracking modes of RDX particles appeared.Finally,the correlation between strain energy density and failure mechanisms of CMDB propellant was revealed by developing four characteristic failure modes.The findings of this study is very important to evaluate the structural integrity of CMDB propellant. 展开更多
关键词 CMDB propellant Mechanical response Strain-rate dependence Failure mechanisms
在线阅读 下载PDF
Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy:A Molecular Dynamics Study 被引量:2
8
作者 Hai-Feng Zhang Hai-Le Yan +1 位作者 Feng Fang Nan Jia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第11期1511-1526,共16页
Mechanical properties of high-entropy alloys(HEAs)with the face-centered cubic(fcc)structure strongly depend on their initial grain orientations.However,the orientation-dependent mechanical responses and the underlyin... Mechanical properties of high-entropy alloys(HEAs)with the face-centered cubic(fcc)structure strongly depend on their initial grain orientations.However,the orientation-dependent mechanical responses and the underlying plastic fl ow mechanisms of such alloys are not yet well understood.Here,deformation of the equiatomic FeMnCoCrNi HEA with various initial orientations under uniaxial tensile testing has been studied by using atomistic simulations,showing the results consistent with the recent experiments on fcc HEAs.The quantitative analysis of the activated deformation modes shows that the initiation of stacking faults is the main plastic deformation mechanism for the crystals initially oriented with[001],[111],and[112],and the total dislocation densities in these crystals are higher than that with the[110]and[123]orientations.Stacking faults,twinning,and hcp-martensitic transformation jointly promote the plastic deformation of the[110]orientation,and twinning in this crystal is more significant than that with other orientations.Deformation in the crystal oriented with[123]is dominated by the hcp-martensite transformation.Comparison of the mechanical behaviors in the FeMnCoCrNi alloy and the conventional materials,i.e.Cu and Fe50Ni50,has shown that dislocation slip tends to be activated more readily in the HEA.This is attributed to the larger lattice distortion in the HEA than the low-entropy materials,leading to the lower critical stress for dislocation nucleation and elastic–plastic transition in the former.In addition,the FeMnCoCrNi HEA with the larger lattice distortion leads to an enhanced capacity of storing dislocations.However,for the[001]-oriented HEA in which dislocation slip and stacking fault are the dominant deformation mechanisms,the limited deformation modes activated are insu fficient to improve the work hardening ability of the material. 展开更多
关键词 High-entropy alloy Molecular dynamics study Mechanical response Plastic deformation mechanism
原文传递
Acoustic Response and Micro-Damage Mechanism of Fiber Composite Materials under Mode-Ⅱ Delamination 被引量:2
9
作者 周伟 吕智慧 +3 位作者 王雅瑞 刘然 陈维业 李晓彤 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期73-76,共4页
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi... Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites. 展开更多
关键词 der DELAMINATION Acoustic Response and Micro-Damage mechanism of Fiber Composite Materials under Mode
原文传递
Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
10
作者 周勇 王云坤 +2 位作者 王晓菲 张玉瑾 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期123-129,共7页
Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational resul... Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational results show that the absorption and emission properties of these probes change obviously when they react with hypochlorous acid. It is found that the probe FHZ has the best performance according to the probing behavior. Moreover, the responsive mechanisms of the probes are studied by analyzing the distributions of molecular orbitals and charge transfer, which are shown as the photon- induced electron transfer (PET) for FHZ and the intramolecular charge transfer OCT) for the other two probes. Specially, solvent effect on optical properties of the probe FHZ before and after reaction is studied within the polarizable continuum model (PCM). It is shown that performance of the probe depends crucially on the solvent polarity. Our computational results agree well with the experimental measurement, and provide information for design of efficient two-photon fluorescent probes. 展开更多
关键词 responsive mechanism hypochlorous acid fluorescentprobe solvent effect two-photon absorption
原文传递
Research Progress on the Mechanism of Crop Saline-alkali Tolerance and Mitigation Measures
11
作者 Ting XU Yantao LIU 《Agricultural Biotechnology》 CAS 2021年第5期74-78,共5页
The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and qual... The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and quality.In this article,we summarized the germination status,physiological characteristics,response mechanisms and mitigation measures of different crops under saline-alkali stress in recent years,aiming to provide important reference for the study of saline-alkali tolerance mechanism in crops,cultivation of crop varieties tolerant to salts and alkalis and improvement of the utilization rate of saline-alkali land,and put forward suggestions for future development trend of saline-alkali land crops and mitigation measures. 展开更多
关键词 Saline-alkali stress CROP Response mechanism Mitigation measures Research progress
在线阅读 下载PDF
Risk and Response of China Overseas Hydropower Projects--A Vision of Corporate Social Responsibility
12
作者 Shi Feng Tiantian Jin Haiying Li 《Journal of Earth Science and Engineering》 2013年第9期639-643,共5页
Recent years, with the quickening of global economic integration and the rapid development of our country, more and more Chinese enterprises begin to implement internationalization strategy and actively develop overse... Recent years, with the quickening of global economic integration and the rapid development of our country, more and more Chinese enterprises begin to implement internationalization strategy and actively develop overseas business. However, the internationalized process of Chinese enterprises is not progressing smoothly. The paper systematically analyzes the risks of China overseas hydropower projects from two aspects: international environment risks and internal risks of hydropower enterprises and points out that effectively fulfilling corporate social responsibility by using Guidance on Social Responsibility (ISO26000) could help Chinese hydropower enterprises to deal with overseas risks. In order to help Chinese hydropower enterprises to improve the CSR (Corporate Social Responsibility) implementation level, the paper integrates the characteristics of hydropower enterprises with the core subjects of ISO26000, examines the key problems on the CSR work of Chinese hydropower enterprises according to requirements of ISO26000 and puts forward effective advices. 展开更多
关键词 Corporate social responsibility China overseas hydropower projects RISK response mechanism ISO26000
在线阅读 下载PDF
Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole
13
作者 Zhenyu Han Kai Liu +1 位作者 Jinyin Ma Diyuan Li 《International Journal of Coal Science & Technology》 CSCD 2024年第5期16-35,共20页
Caverns and tunnels are constantly exposed to dynamic loads,posing a potentially significant threat to the safety of rock structures.To facilitate the understanding of dynamic fracture around openings,a series of disc... Caverns and tunnels are constantly exposed to dynamic loads,posing a potentially significant threat to the safety of rock structures.To facilitate the understanding of dynamic fracture around openings,a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution.The results indicate that the existence of a hole greatly reduces dynamic strength,and the reduction is closely related to hole shape.The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens.Although crack initiation differs for varying hole shapes,the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen,which are effectively identified by velocity trend arrows and contact force distribution.Finally,comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted. 展开更多
关键词 HOLE Rock dynamics PFC Crack propagation Mechanical response
在线阅读 下载PDF
Temperature-dependent compression properties and failure mechanisms of ZrNiSn-based half-Heusler thermoelectric compounds
14
作者 Yanyan Lu Pengxin Zhang +6 位作者 Jinsong Wang Qingfeng Song Zhanhui Chen Yali Wang Lidong Chen Shengqiang Bai Wenzhi Wang 《Journal of Materials Science & Technology》 CSCD 2024年第26期29-36,共8页
Half-Heusler(HH)compounds have emerged as promising candidates for high-temperature thermoelectric power generation;however,their mechanical properties in service environments have been scarcely reported.In this study... Half-Heusler(HH)compounds have emerged as promising candidates for high-temperature thermoelectric power generation;however,their mechanical properties in service environments have been scarcely reported.In this study,the temperature dependences of the mechanical responses and failure mechanisms of an n-type ZrNiSn-based HH compound(Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015))were systematically evaluated through high-temperature compression tests and microfractographic characterization.The test results indicated that the elastic modulus and ultimate compressive strength of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)decreased with increasing temperature.The stress-strain behavior of the material changed from linear(300,500,and 700 K)to nonlinear(900 and 1100 K).Microfractography observations revealed that increasing the temperature reduced the strength of the grain boundary as well as aggravated oxidation and segregation on the fracture surface,which significantly impacted the macro-compressive behavior of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)at elevated temperatures.Finally,a stress-strain relationship for the ZrNiSnbased HH was proposed to describe the change in the compressive response from linear to nonlinear with increasing temperature.The present study elucidates the load-carrying and failure mechanisms of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)within its operational temperature range,providing valuable guidance for the mechanical design of HH thermoelectric devices over their entire service temperature range. 展开更多
关键词 Half-Heusler compounds Temperature dependence Mechanical response Failure mechanism
原文传递
A Preliminary Study on Mechanisms of Well Water Temperature Responses Based on the Modes of Stress Loading
15
作者 Chen Daqing Wan Yongfang 《Earthquake Research in China》 2011年第4期477-485,共9页
Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion... Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms. 展开更多
关键词 Water temperature in well Stress loading Response mechanism
在线阅读 下载PDF
Responsibilities and Working Mechanism of National Human Rights Education and Training Bases
16
作者 CHANG JIAN 《The Journal of Human Rights》 2014年第5期12-13,共2页
On July 22, 2014, the second group of national human rights education and train- ing bases was announced,increasing the number of national bases from the previous three to a total of eight, which reflects the advancem... On July 22, 2014, the second group of national human rights education and train- ing bases was announced,increasing the number of national bases from the previous three to a total of eight, which reflects the advancement of human rights education and ~aining in China and has far-reaching significance. 展开更多
关键词 Responsibilities and Working mechanism of National Human Rights Education and Training Bases
原文传递
Mechanical response analysis of asphalt pavement considering top-down crack based on FDM-DEM coupling simulation 被引量:2
17
作者 Min Wang Xin Yu Chen Chen 《Journal of Road Engineering》 2025年第1期92-105,共14页
The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and di... The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack. 展开更多
关键词 Full-scale pavement structure Top-down crack FDM-DEM coupling model Mechanical response
在线阅读 下载PDF
Residual rock deformation of lined caverns for underground energy storage after air deflation considering stress path 被引量:1
18
作者 Chen Xu Caichu Xia +3 位作者 Gecheng Zhang Sheng Wang Hui Lu Yingjun Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4160-4178,共19页
This study investigates the mechanical response of an underground cavern subjected to cyclic high gas pressure,aiming to establish a theoretical foundation for the design of lined rock caverns(LRCs)for energy storage ... This study investigates the mechanical response of an underground cavern subjected to cyclic high gas pressure,aiming to establish a theoretical foundation for the design of lined rock caverns(LRCs)for energy storage with high internal pressure,e.g.compressed air energy storage(CAES)underground caverns or hydrogen storage caverns.Initially,the stress paths of the surrounding rock during the excavation,pressurization,and depressurization processes are delineated.Analytical expressions for the stress and deformation of the surrounding rock are derived based on the MohreCoulomb criterion.These expressions are then employed to evaluate the displacement of cavern walls under varying qualities of surrounding rock,the contact pressure between the steel lining and the surrounding rock subject to different gas storage pressures,the load-bearing ratio of the surrounding rock,and the impact of lining thickness on the critical gas pressure.Furthermore,the deformation paths of the surrounding rock are evaluated,along with the effects of tunnel depth and diameter on residual deformation of the surrounding rock,and the critical minimum gas pressure at which the surrounding rock and the lining do not detach.The results indicate that residual deformation of the surrounding rock occurs after depressurization under higher internal pressure for higher-quality rock masses,leading to detachment between the surrounding rock and the steel lining.The findings indicate that thicker linings correspond to higher critical minimum gas pressures.However,for lower-quality surrounding rock,thicker linings correspond to lower critical minimum gas pressures.These findings will provide invaluable insights for the design of LRCs for underground energy storage caverns. 展开更多
关键词 Underground energy storage Lined rock cavern(LRC) Cyclic high pressure Mechanical response Stress path
在线阅读 下载PDF
Fault zone mechanical response under co-exploitation of mine and geothermal energy: The combined effect of pore pressure and mining-induced stress 被引量:1
19
作者 Jinghong Yan Dan Ma +2 位作者 Xuefeng Gao Qiang Li Wentao Hou 《International Journal of Coal Science & Technology》 2025年第3期43-66,共24页
As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during min... As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during mining to decrease the min-ing workface temperature while also developing geothermal energy.This method is called the co-exploitation of mine and geothermal energy(CMGE).The geothermal development may precipitate the large-scale failure of the nearby fault zone during the mining process.However,the evolution of shear slide and shear failure of fault under geothermal production/rein-jection during mining is missing.Therefore,a fully-coupled hydraulic mechanism(HM)double-medium model for CMGE was developed based on the measured data of the Chensilou mine.A comparative analysis of the mechanical response of fault between CMGE and single mining was conducted.The disturbance of geothermal production pressure and reinjection pressure under mining on fault stability were respectively expounded.The results indicate that:(1)The disturbance of geo-thermal reinjection amplifies the disturbance of mining on fault stability.The amplified effect resulted in a normal stress drop of the fault,further leading to a substantial increase in shear slide distance,failure area,and cumulative seismic moment of fault compared with the single mining process.(2)As the distance of reinjection well to the fault decreases,the fault failure intensity increases.Setting the production well within the fault is advantageous for controlling fault stability under CMGE.(3)The essence of the combined disturbance of CMGE on the nearby fault is the overlay of tensile stress disturbance on the fault rock mass of the mining and geothermal reinjection.Though the geothermal reinjection causes a minor normal stress drop of fault,it can result in a more serious fault failure under CMGE.This paper supplies a significant gap in understanding thenearby faults failure under CMGE. 展开更多
关键词 Fault zone Mechanical response Co-exploitation of coal and geothermal energy HM fully-coupled model Mining-induced stress
在线阅读 下载PDF
Identification of failure behaviors of underground structures under dynamic loading using machine learning 被引量:1
20
作者 Chun Zhu Yingze Xu +5 位作者 Manchao He Yujing Jiang Murat Karakus Lihua Hu Yalong Jiang Fuqiang Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期414-431,共18页
Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of d... Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%. 展开更多
关键词 Dynamic mechanical response Cracking mode Hole shape/location effect Deep Neural Network(DNN) Stress-strain prediction
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部